IDEAS home Printed from
   My bibliography  Save this article

Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear-least squares problems


  • Serge Gratton


  • Selime Gürol


  • Philippe Toint



When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such applications, where, contrary to the standard algorithm, the least-squares subproblem solved at each iteration of the method is rewritten as a quadratic minimization subject to linear equality constraints. This allows the exploitation of duality properties of the associated linearized problems. This paper considers a recent conjugate-gradient-like method which performs the quadratic minimization in the dual space and produces, in exact arithmetic, the same iterates as those produced by a standard conjugate-gradients method in the primal space. This dual algorithm is computationally interesting whenever the dimension of the dual space is significantly smaller than that of the primal space, yielding gains in terms of both memory usage and computational cost. The relation between this dual space solver and PSAS (Physical-space Statistical Analysis System), another well-known dual space technique used in data assimilation problems, is explained. The use of an effective preconditioning technique is proposed and refined convergence bounds derived, which results in a practical solution method. Finally, stopping rules adequate for a trust-region solver are proposed in the dual space, providing iterates that are equivalent to those obtained with a Steihaug-Toint truncated conjugate-gradient method in the primal space. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Serge Gratton & Selime Gürol & Philippe Toint, 2013. "Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear-least squares problems," Computational Optimization and Applications, Springer, vol. 54(1), pages 1-25, January.
  • Handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:1-25 DOI: 10.1007/s10589-012-9478-7

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Elias L. Khalil (ed.), 2003. "Trust," Books, Edward Elgar Publishing, number 2482.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:1-25. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.