IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i5d10.1007_s00180-024-01554-6.html
   My bibliography  Save this article

Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification

Author

Listed:
  • Ankur Chakraborty

    (Indian Institute of Technology (Indian School of Mines))

  • Nabakumar Jana

    (Indian Institute of Technology (Indian School of Mines))

Abstract

We consider two inverse Gaussian populations with a common mean but different scale-like parameters, where all parameters are unknown. We construct noninformative priors for the ratio of the scale-like parameters to derive matching priors of different orders. Reference priors are proposed for different groups of parameters. The Bayes estimators of the common mean and ratio of the scale-like parameters are also derived. We propose confidence intervals of the conditional error rate in classifying an observation into inverse Gaussian distributions. A generalized variable-based confidence interval and the highest posterior density credible intervals for the error rate are computed. We estimate parameters of the mixture of these inverse Gaussian distributions and obtain estimates of the expected probability of correct classification. An intensive simulation study has been carried out to compare the estimators and expected probability of correct classification. Real data-based examples are given to show the practicality and effectiveness of the estimators.

Suggested Citation

  • Ankur Chakraborty & Nabakumar Jana, 2025. "Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification," Computational Statistics, Springer, vol. 40(5), pages 2249-2276, June.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:5:d:10.1007_s00180-024-01554-6
    DOI: 10.1007/s00180-024-01554-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01554-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01554-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Ren-Dao & Ma, Tie-Feng & Wang, Song-Gui, 2010. "Inferences on the common mean of several inverse Gaussian populations," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 906-915, April.
    2. Ramesh Gupta & H. Akman, 1995. "Bayes estimation in a mixture inverse Gaussian model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 493-503, September.
    3. Shi, Jian-Hong & Lv, Jiang-Long, 2012. "A new generalized p-value for testing equality of inverse Gaussian means under heterogeneity," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 96-102.
    4. Manzoor Ahmad & Y. Chaubey & B. Sinha, 1991. "Estimation of a common mean of several univariate inverse Gaussian populations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(2), pages 357-367, June.
    5. Dal Kim & Sang Kang & Woo Lee, 2006. "Noninformative priors for linear combinations of the normal means," Statistical Papers, Springer, vol. 47(2), pages 249-262, March.
    6. Chung, Hie-Choon & Han, Chien-Pai, 2009. "Conditional confidence intervals for classification error rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4358-4369, October.
    7. Karlis, Dimitris, 2002. "An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 43-52, March.
    8. A. Batsidis & K. Zografos, 2006. "Discrimination of Observations into One of Two Elliptic Populations based on Monotone Training Samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 64(2), pages 221-241, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiefeng Ma & Shuangzhe Liu & S. Ahmed, 2014. "Shrinkage estimation for the mean of the inverse Gaussian population," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 733-752, August.
    2. Liu, Xuhua & Li, Na & Hu, Yuqin, 2015. "Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 136-142.
    3. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    4. Boudt, Kris & Raza, Muhammad Wajid & Wauters, Marjan, 2019. "Evaluating the Shariah-compliance of equity portfolios: The weighting method matters," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 406-417.
    5. Boudt, Kris & Cornilly, Dries & Verdonck, Tim, 2020. "Nearest comoment estimation with unobserved factors," Journal of Econometrics, Elsevier, vol. 217(2), pages 381-397.
    6. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    7. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.
    9. Xiaoping Zhou & Dmitry Malioutov & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Smooth monotone covariance for elliptical distributions and applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1555-1571, September.
    10. Zhao, Kaifeng & Lian, Heng, 2016. "The Expectation–Maximization approach for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 1-11.
    11. Cuizhen Niu & Xu Guo & Wangli Xu & Lixing Zhu, 2014. "Testing equality of shape parameters in several inverse Gaussian populations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 795-809, August.
    12. Toyoto Tanaka & Yoshihiro Hirose & Fumiyasu Komaki, 2020. "Second-order matching prior family parametrized by sample size and matching probability," Statistical Papers, Springer, vol. 61(4), pages 1701-1717, August.
    13. Julien Chevallier & Stéphane Goutte, 2017. "Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of $$\hbox {CO}_2$$ CO 2 and fuel-switching," Annals of Operations Research, Springer, vol. 255(1), pages 169-197, August.
    14. Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
    15. Fischer, Thomas & Lundtofte, Frederik, 2020. "Unequal returns: Using the Atkinson index to measure financial risk," Journal of Banking & Finance, Elsevier, vol. 116(C).
    16. Dennis Frestad & Fred Espen Benth & Steen Koekebakker, 2010. "Modeling Term Structure Dynamics in the Nordic Electricity Swap Market," The Energy Journal, , vol. 31(2), pages 53-86, April.
    17. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Woo Dong Lee & Sang Gil Kang & Yongku Kim, 2019. "Objective Bayesian testing for the linear combinations of normal means," Statistical Papers, Springer, vol. 60(1), pages 147-172, February.
    19. Zdeněk Zmeškal & Dana Dluhošová & Karolina Lisztwanová & Antonín Pončík & Iveta Ratmanová, 2023. "Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy," Forecasting, MDPI, vol. 5(2), pages 1-19, May.
    20. Lillestöl, Jostein, 2002. "Some crude approximation, calibration and estimation procedures for NIG-variates," SFB 373 Discussion Papers 2002,85, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:5:d:10.1007_s00180-024-01554-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.