IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v105y2015icp136-142.html
   My bibliography  Save this article

Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution

Author

Listed:
  • Liu, Xuhua
  • Li, Na
  • Hu, Yuqin

Abstract

In this paper, a new kind of confidence intervals for the common mean of several inverse Gaussian populations are constructed based on a combined confidence distribution. The simulation results demonstrate that the new method is very satisfactory.

Suggested Citation

  • Liu, Xuhua & Li, Na & Hu, Yuqin, 2015. "Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 136-142.
  • Handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:136-142
    DOI: 10.1016/j.spl.2015.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215002023
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dungang Liu & Regina Y. Liu & Min-ge Xie, 2014. "Exact Meta-Analysis Approach for Discrete Data and its Application to 2 × 2 Tables With Rare Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1450-1465, December.
    2. Ye, Ren-Dao & Ma, Tie-Feng & Wang, Song-Gui, 2010. "Inferences on the common mean of several inverse Gaussian populations," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 906-915, April.
    3. Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
    4. Tian, Lili, 2006. "Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1156-1162, November.
    5. Govind Mudholkar & Rajeshwari Natarajan, 2002. "The Inverse Gaussian Models: Analogues of Symmetry, Skewness and Kurtosis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 138-154, March.
    6. Shi, Jian-Hong & Lv, Jiang-Long, 2012. "A new generalized p-value for testing equality of inverse Gaussian means under heterogeneity," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 96-102.
    7. Xie, Minge & Singh, Kesar & Strawderman, William E., 2011. "Confidence Distributions and a Unifying Framework for Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 320-333.
    8. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:juipol:v:47:y:2017:i:c:p:1-11 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:136-142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.