IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i4d10.1007_s00180-024-01493-2.html
   My bibliography  Save this article

Network and attribute-based clustering of tennis players and tournaments

Author

Listed:
  • Pierpaolo D’Urso

    (Sapienza University)

  • Livia Giovanni

    (Luiss University
    Luiss University)

  • Lorenzo Federico

    (Luiss University
    Luiss University)

  • Vincenzina Vitale

    (Sapienza University)

Abstract

This paper aims at targeting some relevant issues for clustering tennis players and tournaments: (i) it considers players, tournaments and the relation between them; (ii) the relation is taken into account in the fuzzy clustering model based on the Partitioning Around Medoids (PAM) algorithm through spatial constraints; (iii) the attributes of the players and of the tournaments are of different nature, qualitative and quantitative. The proposal is novel for the methodology used, a spatial Fuzzy clustering model for players and for tournaments (based on related attributes), where the spatial penalty term in each clustering model depends on the relation between players and tournaments described in the adjacency matrix. The proposed model is compared with a bipartite players-tournament complex network model (the Degree-Corrected Stochastic Blockmodel) that considers only the relation between players and tournaments, described in the adjacency matrix, to obtain communities on each side of the bipartite network. An application on data taken from the ATP official website with regards to the draws of the tournaments, and from the sport statistics website Wheelo ratings for the performance data of players and tournaments, shows the performances of the proposed clustering model.

Suggested Citation

  • Pierpaolo D’Urso & Livia Giovanni & Lorenzo Federico & Vincenzina Vitale, 2025. "Network and attribute-based clustering of tennis players and tournaments," Computational Statistics, Springer, vol. 40(4), pages 1689-1712, April.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:4:d:10.1007_s00180-024-01493-2
    DOI: 10.1007/s00180-024-01493-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01493-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01493-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Tea & Tim B. Swartz, 2023. "The analysis of serve decisions in tennis using Bayesian hierarchical models," Annals of Operations Research, Springer, vol. 325(1), pages 633-648, June.
    2. Klaassen, Franc J. G. M. & Magnus, Jan R., 2003. "Forecasting the winner of a tennis match," European Journal of Operational Research, Elsevier, vol. 148(2), pages 257-267, July.
    3. Pierpaolo D’Urso & Livia De Giovanni & Tim Swartz, 2023. "Editorial: Big data and data science in sport," Annals of Operations Research, Springer, vol. 325(1), pages 1-7, June.
    4. Magnus, J.R. & Klaassen, F.J.G.M., 1996. "Testing some common tennis hypotheses : Four years at Wimbledon," Discussion Paper 1996-73, Tilburg University, Center for Economic Research.
    5. Efehan Ulas, 2021. "Examination of National Basketball Association (NBA) team values based on dynamic linear mixed models," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
    6. Maurizio Carpita & Paola Pasca & Serena Arima & Enrico Ciavolino, 2023. "Clustering of variables methods and measurement models for soccer players’ performances," Annals of Operations Research, Springer, vol. 325(1), pages 37-56, June.
    7. de Arruda, Guilherme F. & Costa, Luciano da Fontoura & Rodrigues, Francisco A., 2012. "A complex networks approach for data clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6174-6183.
    8. S. L. George, 1973. "Optimal Strategy in Tennis: A Simple Probabilistic Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(1), pages 97-104, March.
    9. Pierpaolo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A robust method for clustering football players with mixed attributes," Annals of Operations Research, Springer, vol. 325(1), pages 9-36, June.
    10. Alberto Arcagni & Vincenzo Candila & Rosanna Grassi, 2023. "A new model for predicting the winner in tennis based on the eigenvector centrality," Annals of Operations Research, Springer, vol. 325(1), pages 615-632, June.
    11. Klaassen F. J G M & Magnus J. R., 2001. "Are Points in Tennis Independent and Identically Distributed? Evidence From a Dynamic Binary Panel Data Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 500-509, June.
    12. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristijan Breznik & Vincenzo Candila & Antonina Milekhina & Marialuisa Restaino, 2025. "Eras of dominance: identifying strong and weak periods in professional tennis," Computational Statistics, Springer, vol. 40(4), pages 2049-2066, April.
    2. Thierry Lallemand & Robert Plasman & François Rycx, 2008. "Women and Competition in Elimination Tournaments," Journal of Sports Economics, , vol. 9(1), pages 3-19, February.
    3. Singh, Aaditya & Scarf, Phil & Baker, Rose, 2023. "A unified theory for bivariate scores in possessive ball-sports: The case of handball," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1099-1112.
    4. Kovalchik, Stephanie & Reid, Machar, 2019. "A calibration method with dynamic updates for within-match forecasting of wins in tennis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 756-766.
    5. Axel Anderson & Jeremy Rosen & John Rust & Kin-Ping Wong, 2021. "Disequilibrium Play in Tennis," Working Papers gueconwpa~21-21-07, Georgetown University, Department of Economics.
    6. Easton, Stephen & Uylangco, Katherine, 2010. "Forecasting outcomes in tennis matches using within-match betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 564-575, July.
    7. del Corral, Julio & Prieto-Rodríguez, Juan, 2010. "Are differences in ranks good predictors for Grand Slam tennis matches?," International Journal of Forecasting, Elsevier, vol. 26(3), pages 551-563, July.
    8. Klaassen, Franc J.G.M. & Magnus, Jan R., 2009. "The efficiency of top agents: An analysis through service strategy in tennis," Journal of Econometrics, Elsevier, vol. 148(1), pages 72-85, January.
    9. Uwe Sunde, 2009. "Heterogeneity and performance in tournaments: a test for incentive effects using professional tennis data," Applied Economics, Taylor & Francis Journals, vol. 41(25), pages 3199-3208.
    10. Julio del Corral, 2009. "Competitive Balance and Match Uncertainty in Grand-Slam Tennis," Journal of Sports Economics, , vol. 10(6), pages 563-581, December.
    11. Anthony Glass & Karligash Kenjegalieva & Jason Taylor, 2015. "Game, set and match: evaluating the efficiency of male professional tennis players," Journal of Productivity Analysis, Springer, vol. 43(2), pages 119-131, April.
    12. Chan Timothy C.Y. & Singal Raghav, 2018. "A Bayesian regression approach to handicapping tennis players based on a rating system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(3), pages 131-141, September.
    13. Holmes, Benjamin & McHale, Ian G. & Żychaluk, Kamila, 2023. "A Markov chain model for forecasting results of mixed martial arts contests," International Journal of Forecasting, Elsevier, vol. 39(2), pages 623-640.
    14. Christophe Ley & Yves Dominicy, 2017. "Mutual Point-winning Probabilities (MPW): a New Performance Measure for Table Tennis," Working Papers ECARES ECARES 2017-23, ULB -- Universite Libre de Bruxelles.
    15. Klaassen, F.J.G.M. & Magnus, J.R., 2006. "Are Economic Agents Successful Optimizers? An Analysis Through Strategy in Tennis," Other publications TiSEM 73e12d86-8fe4-4a87-9181-7, Tilburg University, School of Economics and Management.
    16. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    17. Guy Elaad & Alex Krumer & Jeffrey Kantor, 2018. "Corruption and Sensitive Soccer Games: Cross-Country Evidence," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 34(3), pages 364-394.
    18. Romain Gauriot & Lionel Page & John Wooders, 2016. "Nash at Wimbledon: Evidence from Half a Million Serves," QuBE Working Papers 046, QUT Business School.
    19. Legge, Stefan & Schmid, Lukas, 2013. "Rankings, Random Successes, and Individual Performance," Economics Working Paper Series 1340, University of St. Gallen, School of Economics and Political Science.
    20. Klaassen, F.J.G.M. & Magnus, J.R., 1998. "On the Independence and Identical Distribution of Points in Tennis," Other publications TiSEM 395a6222-6318-49b5-a42c-6, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:4:d:10.1007_s00180-024-01493-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.