IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i3d10.1007_s00180-024-01541-x.html
   My bibliography  Save this article

Change point estimation for Gaussian time series data with copula-based Markov chain models

Author

Listed:
  • Li-Hsien Sun

    (National Central University)

  • Yu-Kai Wang

    (National Central University)

  • Lien-Hsi Liu

    (National Central University)

  • Takeshi Emura

    (Institute of Statistical Mathematics)

  • Chi-Yang Chiu

    (University of Tennessee Health Science Center)

Abstract

This paper proposes a method for change-point estimation, focusing on detecting structural shifts within time series data. Traditional maximum likelihood estimation (MLE) methods assume either independence or linear dependence via auto-regressive models. To address this limitation, the paper introduces copula-based Markov chain models, offering more flexible dependence modeling. These models treat a Gaussian time series as a Markov chain and utilize copula functions to handle serial dependence. The profile MLE procedure is then employed to estimate the change-point and other model parameters, with the Newton–Raphson algorithm facilitating numerical calculations for the estimators. The proposed approach is evaluated through simulations and real stock return data, considering two distinct periods: the 2008 financial crisis and the COVID-19 pandemic in 2020.

Suggested Citation

  • Li-Hsien Sun & Yu-Kai Wang & Lien-Hsi Liu & Takeshi Emura & Chi-Yang Chiu, 2025. "Change point estimation for Gaussian time series data with copula-based Markov chain models," Computational Statistics, Springer, vol. 40(3), pages 1541-1581, March.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01541-x
    DOI: 10.1007/s00180-024-01541-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01541-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01541-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    2. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    3. Long, Ting-Hsuan & Emura, Takeshi, 2014. "A control chart using copula-based Markov chain models," MPRA Paper 57419, University Library of Munich, Germany.
    4. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    5. Nasri, Bouchra R. & Rémillard, Bruno N. & Bahraoui, Tarik, 2022. "Change-point problems for multivariate time series using pseudo-observations," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    6. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    7. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    8. Bucher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Reprints ISBA 2014020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    10. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    11. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    12. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    13. Rémillard, Bruno & Papageorgiou, Nicolas & Soustra, Frédéric, 2012. "Copula-based semiparametric models for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 30-42.
    14. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    15. Marc Lavielle & Gilles Teyssière, 2007. "Adaptive Detection of Multiple Change-Points in Asset Price Volatility," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 129-156, Springer.
    16. Holger Dette & Dominik Wied, 2016. "Detecting relevant changes in time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 371-394, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    2. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    3. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
    4. Shi, Peng & Zhao, Zifeng, 2024. "Enhanced pricing and management of bundled insurance risks with dependence-aware prediction using pair copula construction," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    6. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    7. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
    8. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    9. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    10. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    11. Overbeck Ludger & Schmidt Wolfgang M., 2015. "Multivariate Markov Families of Copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, October.
    12. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    13. Simard Clarence & Rémillard Bruno, 2015. "Forecasting time series with multivariate copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-24, May.
    14. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    15. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    16. Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
    17. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    18. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
    19. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    20. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01541-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.