Likelihood inference for unified transformation cure model with interval censored data
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-024-01480-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Katherine Davies & Suvra Pal & Joynob A. Siddiqua, 2021. "Stochastic EM algorithm for generalized exponential cure rate model and an empirical study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(12), pages 2112-2135, September.
- Sudipto Banerjee & Bradley P. Carlin, 2004. "Parametric Spatial Cure Rate Models for Interval-Censored Time-to-Relapse Data," Biometrics, The International Biometric Society, vol. 60(1), pages 268-275, March.
- N. Balakrishnan & Suvra Pal, 2015. "An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods," Computational Statistics, Springer, vol. 30(1), pages 151-189, March.
- Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
- Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
- Piyachart Wiangnak & Suvra Pal, 2018. "Gamma lifetimes and associated inference for interval-censored cure rate model with COM–Poisson competing cause," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(6), pages 1491-1509, March.
- N. Balakrishnan & Suvra Pal, 2015. "Likelihood Inference for Flexible Cure Rate Models with Gamma Lifetimes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(19), pages 4007-4048, October.
- N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
- Suvra Pal & Hongbo Yu & Zachary D. Loucks & Ian M. Harris, 2020. "Illustration of the Flexibility of Generalized Gamma Distribution in Modeling Right Censored Survival Data: Analysis of Two Cancer Datasets," Annals of Data Science, Springer, vol. 7(1), pages 77-90, March.
- Suvra Pal & Jacob Majakwara & N. Balakrishnan, 2018. "An EM algorithm for the destructive COM-Poisson regression cure rate model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 143-171, February.
- Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
- Guoqing Diao & Guosheng Yin, 2012. "A general transformation class of semiparametric cure rate frailty models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 959-989, October.
- Suvra Pal & Souvik Roy, 2021. "On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 324-342, August.
- Pal, Suvra & Balakrishnan, N., 2016. "Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 9-20.
- Suvra Pal & N. Balakrishnan, 2017. "Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data," Computational Statistics, Springer, vol. 32(2), pages 429-449, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
- Suvra Pal & Souvik Roy, 2021. "On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 324-342, August.
- Diego I. Gallardo & Yolanda M. Gómez & Héctor J. Gómez & María José Gallardo-Nelson & Marcelo Bourguignon, 2023. "The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
- Suvra Pal & Jacob Majakwara & N. Balakrishnan, 2018. "An EM algorithm for the destructive COM-Poisson regression cure rate model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 143-171, February.
- Suvra Pal & N. Balakrishnan, 2017. "Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data," Computational Statistics, Springer, vol. 32(2), pages 429-449, June.
- Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
- Pal, Suvra & Balakrishnan, N., 2016. "Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 9-20.
- Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
- Li-Hsiang Lin & Li-Shan Huang, 2024. "Promotion Time Cure Model with Local Polynomial Estimation," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 824-853, December.
- Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
- Suvra Pal & Hongbo Yu & Zachary D. Loucks & Ian M. Harris, 2020. "Illustration of the Flexibility of Generalized Gamma Distribution in Modeling Right Censored Survival Data: Analysis of Two Cancer Datasets," Annals of Data Science, Springer, vol. 7(1), pages 77-90, March.
- Emura, Takeshi & Shiu, Shau-Kai, 2014. "Estimation and model selection for left-truncated and right-censored lifetime data with application to electric power transformers analysis," MPRA Paper 57528, University Library of Munich, Germany.
- Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
- Sellers, Kimberly F. & Morris, Darcy Steeg & Balakrishnan, Narayanaswamy, 2016. "Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 152-168.
- Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Chun Pan & Bo Cai & Xuemei Sui, 2024. "A Bayesian proportional hazards mixture cure model for interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 327-344, April.
- Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
- Mário Castro & Yolanda M. Gómez, 2020. "A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 677-692, June.
- Olayidé Boussari & Laurent Bordes & Gaëlle Romain & Marc Colonna & Nadine Bossard & Laurent Remontet & Valérie Jooste, 2021. "Modeling excess hazard with time‐to‐cure as a parameter," Biometrics, The International Biometric Society, vol. 77(4), pages 1289-1302, December.
More about this item
Keywords
EM algorithm; Interval censoring; Smoking cessation; Proportional hazards; Profile likelihood;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01480-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.