IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i4d10.1007_s00180-023-01448-z.html
   My bibliography  Save this article

High-dimensional penalized Bernstein support vector classifier

Author

Listed:
  • Rachid Kharoubi

    (Université du Québec à Montréal)

  • Abdallah Mkhadri

    (University of Cadi Ayyad)

  • Karim Oualkacha

    (Université du Québec à Montréal)

Abstract

The support vector machine (SVM) is a powerful classifier used for binary classification to improve the prediction accuracy. However, the nondifferentiability of the SVM hinge loss function can lead to computational difficulties in high-dimensional settings. To overcome this problem, we rely on the Bernstein polynomial and propose a new smoothed version of the SVM hinge loss called the Bernstein support vector machine (BernSVC). This extension is suitable for the high dimension regime. As the BernSVC objective loss function is twice differentiable everywhere, we propose two efficient algorithms for computing the solution of the penalized BernSVC. The first algorithm is based on coordinate descent with the maximization-majorization principle and the second algorithm is the iterative reweighted least squares-type algorithm. Under standard assumptions, we derive a cone condition and a restricted strong convexity to establish an upper bound for the weighted lasso BernSVC estimator. By using a local linear approximation, we extend the latter result to the penalized BernSVC with nonconvex penalties SCAD and MCP. Our bound holds with high probability and achieves the so-called fast rate under mild conditions on the design matrix. Simulation studies are considered to illustrate the prediction accuracy of BernSVC relative to its competitors and also to compare the performance of the two algorithms in terms of computational timing and error estimation. The use of the proposed method is illustrated through analysis of three large-scale real data examples.

Suggested Citation

  • Rachid Kharoubi & Abdallah Mkhadri & Karim Oualkacha, 2024. "High-dimensional penalized Bernstein support vector classifier," Computational Statistics, Springer, vol. 39(4), pages 1909-1936, June.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01448-z
    DOI: 10.1007/s00180-023-01448-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01448-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01448-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01448-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.