IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i3d10.1007_s00180-023-01357-1.html
   My bibliography  Save this article

Generalized ridge shrinkage estimation in restricted linear model

Author

Listed:
  • Feng Qian

    (Changzhou Institute of Technology)

  • Rong Chen

    (Beijing University of Technology)

  • Ling Wang

    (Nanjing Vocational University of Industry Technology)

Abstract

In the case of multicollinearity, biased estimators are always introduced to correct the least squares estimator. In this paper, we propose a new biased estimator for the restricted linear model. The properties of the new estimator and its superiority over the restricted least squares estimator in terms of the mean square error and Pitman closeness criterion are theoretically analysed. Furthermore, we optimize and verify the feasibility of the new estimator using a numerical simulation.

Suggested Citation

  • Feng Qian & Rong Chen & Ling Wang, 2024. "Generalized ridge shrinkage estimation in restricted linear model," Computational Statistics, Springer, vol. 39(3), pages 1403-1416, May.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01357-1
    DOI: 10.1007/s00180-023-01357-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01357-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01357-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hawkins, Douglas M. & Yin, Xiangrong, 2002. "A faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 253-262, August.
    2. Hu Yang & Jianwen Xu, 2009. "An alternative stochastic restricted Liu estimator in linear regression," Statistical Papers, Springer, vol. 50(3), pages 639-647, June.
    3. Groß, Jürgen, 2003. "Restricted ridge estimation," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 57-64, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Issam Dawoud & Hussein Eledum, 2024. "New Stochastic Restricted Biased Regression Estimators," Mathematics, MDPI, vol. 13(1), pages 1-18, December.
    2. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    3. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    4. Turlach, Berwin A., 2006. "An even faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 642-658, February.
    5. M. Revan Özkale, 2014. "The relative efficiency of the restricted estimators in linear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 998-1027, May.
    6. Subhash C. Basak & Denise Mills & Douglas M. Hawkins & Hisham A. El‐Masri, 2003. "Prediction of Human Blood: Air Partition Coefficient: A Comparison of Structure‐Based and Property‐Based Methods," Risk Analysis, John Wiley & Sons, vol. 23(6), pages 1173-1184, December.
    7. Jahufer, Aboobacker & Jianbao, Chen, 2009. "Assessing global influential observations in modified ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 513-518, February.
    8. Esra Akdeniz Duran & Fikri Akdeniz, 2012. "Efficiency of the modified jackknifed Liu-type estimator," Statistical Papers, Springer, vol. 53(2), pages 265-280, May.
    9. Roozbeh, M. & Arashi, M., 2013. "Feasible ridge estimator in partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 35-44.
    10. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    11. M. Alkhamisi, 2010. "Simulation study of new estimators combining the SUR ridge regression and the restricted least squares methodologies," Statistical Papers, Springer, vol. 51(3), pages 651-672, September.
    12. Murat Genç, 2022. "A new double-regularized regression using Liu and lasso regularization," Computational Statistics, Springer, vol. 37(1), pages 159-227, March.
    13. Autcha Araveeporn, 2024. "Modified Liu Parameters for Scaling Options of the Multiple Regression Model with Multicollinearity Problem," Mathematics, MDPI, vol. 12(19), pages 1-18, October.
    14. Lübke, Karsten & Czogiel, Irina & Weihs, Claus, 2004. "A computer intensive method for choosing the ridge parameter," Technical Reports 2004,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Čížek, Pavel, 2004. "(Non) Linear Regression Modeling," Papers 2004,11, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    16. Yalian Li & Hu Yang, 2010. "A new stochastic mixed ridge estimator in linear regression model," Statistical Papers, Springer, vol. 51(2), pages 315-323, June.
    17. Ning Li & Hu Yang, 2021. "Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models," Statistical Papers, Springer, vol. 62(2), pages 661-680, April.
    18. Yalian Li & Hu Yang, 2019. "Performance of the restricted almost unbiased type principal components estimators in linear regression model," Statistical Papers, Springer, vol. 60(1), pages 19-34, February.
    19. Bahadır Yüzbaşı & S. Ejaz Ahmed, 2020. "Ridge Type Shrinkage Estimation of Seemingly Unrelated Regressions And Analytics of Economic and Financial Data from “Fragile Five” Countries," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    20. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01357-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.