IDEAS home Printed from
   My bibliography  Save this article

Restricted ridge estimation


  • Groß, Jürgen


In this paper, we introduce a ridge estimator for the vector of parameters in a linear regression model when additional linear restrictions on the parameter vector are assumed to hold. The estimator is a generalization of the well-known restricted least-squares estimator and is confined to the (affine) subspace which is generated by the restrictions. Necessary and sufficient conditions for the superiority of the new estimator over the restricted least-squares estimator are derived. Our new estimator is not to be confounded with the restricted ridge regression estimator introduced by Sarkar (Comm. Statist. Theory Methods 21 (1992) 1987).

Suggested Citation

  • Groß, Jürgen, 2003. "Restricted ridge estimation," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 57-64, October.
  • Handle: RePEc:eee:stapro:v:65:y:2003:i:1:p:57-64

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    2. M. Alkhamisi & I. MacNeill, 2015. "Recent results in ridge regression methods," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 359-376, December.
    3. M. Alkhamisi, 2010. "Simulation study of new estimators combining the SUR ridge regression and the restricted least squares methodologies," Statistical Papers, Springer, vol. 51(3), pages 651-672, September.
    4. Roozbeh, M. & Arashi, M., 2013. "Feasible ridge estimator in partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 35-44.
    5. Özkale, M. Revan, 2009. "A stochastic restricted ridge regression estimator," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1706-1716, September.
    6. Yalian Li & Hu Yang, 2010. "A new stochastic mixed ridge estimator in linear regression model," Statistical Papers, Springer, vol. 51(2), pages 315-323, June.
    7. Hu Yang & Jianwen Xu, 2011. "Preliminary test Liu estimators based on the conflicting W, LR and LM tests in a regression model with multivariate Student-t error," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 275-292, May.
    8. Jahufer, Aboobacker & Jianbao, Chen, 2009. "Assessing global influential observations in modified ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 513-518, February.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:65:y:2003:i:1:p:57-64. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.