On the empirical estimator of the boundary in inverse first-exit problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-020-00989-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Bucci, Andrea & Sanmarchi, Francesco & Santi, Luca & Golinelli, Davide, 2024. "Evaluating the nonlinear association between PM10 and emergency department visits," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
- Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2020.
"Bayesian Modelling of TVP-VARs Using Regression Trees,"
Working Papers
2308, University of Strathclyde Business School, Department of Economics, revised Aug 2023.
- Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2022. "Bayesian Modeling of TVP-VARs Using Regression Trees," Papers 2209.11970, arXiv.org, revised May 2023.
- Kohns, David & Bhattacharjee, Arnab, 2023.
"Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Macroeconomic forecasting in a multi‐country context,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
- Bai, Yu & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Macroeconomic Forecasting in a Multi-country Context," CEPR Discussion Papers 16994, C.E.P.R. Discussion Papers.
- Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic Forecasting in a Multi-country Context," Working Papers 22-02, Federal Reserve Bank of Cleveland.
- Mike West, 2020. "Reply to Discussion of “Bayesian forecasting of multivariate time series: scalability, structure uncertainty and decisions”," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 41-44, February.
- Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org, revised Jan 2025.
- Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024.
"Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference,"
Papers
2404.11057, arXiv.org.
- Helmut Lütkepohl & Fei Shang & Luis Uzeda & Tomasz Woźniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Discussion Papers of DIW Berlin 2081, DIW Berlin, German Institute for Economic Research.
- Florian Huber & Michael Pfarrhofer & Philipp Piribauer, 2020.
"A multi‐country dynamic factor model with stochastic volatility for euro area business cycle analysis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 911-926, September.
- Florian Huber & Michael Pfarrhofer & Philipp Piribauer, 2020. "A multi-country dynamic factor model with stochastic volatility for euro area business cycle analysis," Papers 2001.03935, arXiv.org.
- Chernis Tony, 2024.
"Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 293-317, April.
- Tony Chernis, 2023. "Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis," Staff Working Papers 23-45, Bank of Canada.
- Niaz Bashiri Behmiri & Maryam Ahmadi & Juha-Pekka Junttila & Matteo Manera, 2021.
"Financial Stress and Basis in Energy Markets,"
The Energy Journal, , vol. 42(5), pages 67-88, September.
- Niaz Bashiri Behmiri, Maryam Ahmadi, Juha-Pekka Junttila, and Matteo Manera, 2021. "Financial Stress and Basis in Energy Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
- Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).
- Florian Huber & Gregor Kastner & Michael Pfarrhofer, 2025.
"Introducing shrinkage in heavy-tailed state space models to predict equity excess returns,"
Empirical Economics, Springer, vol. 68(2), pages 535-553, February.
- Florian Huber & Gregor Kastner & Michael Pfarrhofer, 2018. "Introducing shrinkage in heavy-tailed state space models to predict equity excess returns," Papers 1805.12217, arXiv.org, revised Jul 2019.
- Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
- Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Magnus Reif, 2022.
"Time‐Varying Dynamics of the German Business Cycle: A Comprehensive Investigation,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(1), pages 80-102, February.
- Magnus Reif, 2021. "Time-Varying Dynamics of the German Business Cycle: A Comprehensive Investigation," CESifo Working Paper Series 9271, CESifo.
- Ding, Shusheng & Wang, Kaihao & Cui, Tianxiang & Du, Min, 2023. "The time-varying impact of geopolitical risk on natural resource prices: The post-COVID era evidence," Resources Policy, Elsevier, vol. 86(PB).
More about this item
Keywords
Bayes estimator; Empirical estimator; Inverse first passage times; Markov chain Monte Carlo;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-020-00989-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.