IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2025-52.html
   My bibliography  Save this paper

Bayesian Estimation of DSGE Models: An Update

Author

Listed:
  • Pablo A. Guerron-Quintana
  • James M. Nason

Abstract

This chapter surveys Bayesian methods for estimating dynamic stochastic general equilibrium (DSGE) models. We focus on New Keynesian (NK)DSGE models because of the ongoing interest shown in this class of models by economists in academic and policy-making institutions. Their interest stems from the ability of this class of DSGE model to transmit monetary policy shocks into endogenous fluctuations at business cycle frequencies. Intuition about this propagation mechanism is developed by reviewing the structure of a canonical NKDSGE model. Estimation and evaluation of the NKDSGE model rests on detrending its optimality and equilibrium conditions to construct a linear approximation of the model from which we solve for its linear decision rules. This solution is mapped into a linear state space model. It allows us to run the Kalman filter generating predictions and updates of the detrended state and control variables and the predictive likelihood of the linear approximate NKDSGE model. The predictions, updates, and likelihood are inputs needed to operate the Metropolis-Hastings Markov chain Monte Carlo sampler from which we draw the posterior distribution of the NKDSGE model. The sampler also requires the analyst to pick priors for the NKDSGE model parameters and initial conditions to start the sampler. We review pseudo-code that implements this sampler before reporting estimates of a canonical NKDSGE model across samples that begin in 1982Q1 and end in 2019Q4, 2020Q4, 2021Q4, and 2022Q4. The estimates are compared across the four samples. This survey also gives a short history of DSGE model estimation as well as pointing to issues that are at the frontier of this research agenda.

Suggested Citation

  • Pablo A. Guerron-Quintana & James M. Nason, 2025. "Bayesian Estimation of DSGE Models: An Update," CAMA Working Papers 2025-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2025-52
    as

    Download full text from publisher

    File URL: https://crawford.anu.edu.au/sites/default/files/2025-09/52_2025_GuerronQuintana_Nason_1.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2025-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.