IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i1d10.1007_s00180-020-01008-9.html
   My bibliography  Save this article

Greedy clustering of count data through a mixture of multinomial PCA

Author

Listed:
  • Nicolas Jouvin

    (Université Paris 1 Panthéon Sorbonne, Laboratoire SAMM, EA 4543
    Université de Paris, MAP 5, UMR 8145)

  • Pierre Latouche

    (Université de Paris, MAP 5, UMR 8145)

  • Charles Bouveyron

    (Université Côte d’Azur, Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai Team)

  • Guillaume Bataillon

    (Pôle de médecine diagnostique et théranostique, Institut Curie)

  • Alain Livartowski

    (Institut Curie, Direction des Data)

Abstract

Count data is becoming more and more ubiquitous in a wide range of applications, with datasets growing both in size and in dimension. In this context, an increasing amount of work is dedicated to the construction of statistical models directly accounting for the discrete nature of the data. Moreover, it has been shown that integrating dimension reduction to clustering can drastically improve performance and stability. In this paper, we rely on the mixture of multinomial PCA, a mixture model for the clustering of count data, also known as the probabilistic clustering-projection model in the literature. Related to the latent Dirichlet allocation model, it offers the flexibility of topic modeling while being able to assign each observation to a unique cluster. We introduce a greedy clustering algorithm, where inference and clustering are jointly done by mixing a classification variational expectation maximization algorithm, with a branch & bound like strategy on a variational lower bound. An integrated classification likelihood criterion is derived for model selection, and a thorough study with numerical experiments is proposed to assess both the performance and robustness of the method. Finally, we illustrate the qualitative interest of the latter in a real-world application, for the clustering of anatomopathological medical reports, in partnership with expert practitioners from the Institut Curie hospital.

Suggested Citation

  • Nicolas Jouvin & Pierre Latouche & Charles Bouveyron & Guillaume Bataillon & Alain Livartowski, 2021. "Greedy clustering of count data through a mixture of multinomial PCA," Computational Statistics, Springer, vol. 36(1), pages 1-33, March.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01008-9
    DOI: 10.1007/s00180-020-01008-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-01008-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-01008-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    3. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    4. Bergé, Laurent R. & Bouveyron, Charles & Corneli, Marco & Latouche, Pierre, 2019. "The latent topic block model for the co-clustering of textual interaction data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 247-270.
    5. Isabella Zwiener & Barbara Frisch & Harald Binder, 2014. "Transforming RNA-Seq Data to Improve the Performance of Prognostic Gene Signatures," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-13, January.
    6. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    7. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    8. James A Fordyce & Zachariah Gompert & Matthew L Forister & Chris C Nice, 2011. "A Hierarchical Bayesian Approach to Ecological Count Data: A Flexible Tool for Ecologists," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    9. Léna CAREL & Pierre ALQUIER, 2017. "Simultaneous Dimension Reduction and Clustering via the NMF-EM Algorithm," Working Papers 2017-38, Center for Research in Economics and Statistics.
    10. Ding, Chris & Li, Tao & Peng, Wei, 2008. "On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3913-3927, April.
    11. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    2. Bastian Schaefermeier & Gerd Stumme & Tom Hanika, 2021. "Topic space trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5759-5795, July.
    3. Yoshi Fujiwara & Rubaiyat Islam, 2021. "Bitcoin's Crypto Flow Network," Papers 2106.11446, arXiv.org, revised Jul 2021.
    4. Bouveyron, Charles & Brunet, Camille, 2012. "Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 29-41.
    5. van Loon, Austin, 2022. "Three Families of Automated Text Analysis," SocArXiv htnej, Center for Open Science.
    6. Paul Hofmarcher & Sourav Adhikari & Bettina Grun, 2022. "Gaining Insights on U.S. Senate Speeches Using a Time Varying Text Based Ideal Point Model," Papers 2206.10877, arXiv.org.
    7. Travis R Meyer & Daniel Balagué & Miguel Camacho-Collados & Hao Li & Katie Khuu & P Jeffrey Brantingham & Andrea L Bertozzi, 2019. "A year in Madrid as described through the analysis of geotagged Twitter data," Environment and Planning B, , vol. 46(9), pages 1724-1740, November.
    8. Andreas Falke & Harald Hruschka, 2022. "Analyzing browsing across websites by machine learning methods," Journal of Business Economics, Springer, vol. 92(5), pages 829-852, July.
    9. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    10. Anastasios Bellas & Charles Bouveyron & Marie Cottrell & Jérôme Lacaille, 2013. "Model-based clustering of high-dimensional data streams with online mixture of probabilistic PCA," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 281-300, September.
    11. Zhang, Lingsong & Lu, Shu & Marron, J.S., 2015. "Nested nonnegative cone analysis," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 100-110.
    12. Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 1-65.
    13. Ning Zhong & David A. Schweidel, 2020. "Capturing Changes in Social Media Content: A Multiple Latent Changepoint Topic Model," Marketing Science, INFORMS, vol. 39(4), pages 827-846, July.
    14. Imran Ali & Devika Kannan, 2022. "Mapping research on healthcare operations and supply chain management: a topic modelling-based literature review," Annals of Operations Research, Springer, vol. 315(1), pages 29-55, August.
    15. Nikulin, Vladimir & Huang, Tian-Hsiang & Ng, Shu-Kay & Rathnayake, Suren I. & McLachlan, Geoffrey J., 2011. "A very fast algorithm for matrix factorization," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 773-782, July.
    16. Sun, Lijun & Axhausen, Kay W., 2016. "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 511-524.
    17. Ma, Xiaoke & Wang, Bingbo & Yu, Liang, 2018. "Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 786-802.
    18. Mohammadamin Edrisi & Xiru Huang & Huw A. Ogilvie & Luay Nakhleh, 2023. "Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Papers 2003.05095, arXiv.org.
    20. Alexandre L. M. Levada, 2021. "PCA-KL: a parametric dimensionality reduction approach for unsupervised metric learning," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 829-868, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01008-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.