IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v34y2025i2d10.1007_s11749-025-00967-9.html
   My bibliography  Save this article

Flexible clustering via Gaussian parsimonious mixture models with censored and missing values

Author

Listed:
  • Wan-Lun Wang

    (National Cheng Kung University)

  • Victor Hugo Lachos

    (University of Connecticut)

  • Yu-Chien Chen

    (National Chung Hsing University)

  • Tsung-I Lin

    (National Chung Hsing University
    China Medical University)

Abstract

The Gaussian mixture model (GMM) is a versatile and widely used tool for model-based clustering and classification of multivariate data with heterogeneity. While there are existing software packages designed to fit the GMM with varying numbers of mixture components and covariance structures, they are inapplicable when dealing with data containing both censored and missing values. This paper addresses this limitation by proposing an extended framework of the GMM, called the GPMM-CM, which incorporates 14 specifications of parsimonious component–covariance matrices to accommodate the complex situation of existing censored and missing values. Under the missing at random mechanism, an analytically feasible expectation conditional maximization algorithm is devised for carrying out maximum likelihood estimation of the GPMM-CM approach. The superiority and utility of the proposed methodology are demonstrated through analyses of both real and simulated datasets.

Suggested Citation

  • Wan-Lun Wang & Victor Hugo Lachos & Yu-Chien Chen & Tsung-I Lin, 2025. "Flexible clustering via Gaussian parsimonious mixture models with censored and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(2), pages 431-458, June.
  • Handle: RePEc:spr:testjl:v:34:y:2025:i:2:d:10.1007_s11749-025-00967-9
    DOI: 10.1007/s11749-025-00967-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-025-00967-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-025-00967-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Lee, Gyemin & Scott, Clayton, 2012. "EM algorithms for multivariate Gaussian mixture models with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2816-2829.
    3. Sharon X. Lee & Tsung-I Lin & Geoffrey J. McLachlan, 2021. "Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 481-512, June.
    4. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    5. Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
    6. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    7. Lachos, Víctor H. & Moreno, Edgar J. López & Chen, Kun & Cabral, Celso Rômulo Barbosa, 2017. "Finite mixture modeling of censored data using the multivariate Student-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 151-167.
    8. Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
    9. Laurent Bordes & Didier Chauveau, 2016. "Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data," Computational Statistics, Springer, vol. 31(4), pages 1513-1538, December.
    10. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
    11. Silvia Liverani & Lucy Leigh & Irene L. Hudson & Julie E. Byles, 2021. "Clustering method for censored and collinear survival data," Computational Statistics, Springer, vol. 36(1), pages 35-60, March.
    12. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    13. Jocelyn T. Chi & Eric C. Chi & Richard G. Baraniuk, 2016. "k -POD: A Method for k -Means Clustering of Missing Data," The American Statistician, Taylor & Francis Journals, vol. 70(1), pages 91-99, February.
    14. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    15. Su, Yu-Sung & Gelman, Andrew & Hill, Jennifer & Yajima, Masanao, 2011. "Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i02).
    16. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering via mixtures of t factor analyzers with incomplete data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 659-690, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xiaoyue & Cook, Dianne & Hofmann, Heike, 2015. "Visually Exploring Missing Values in Multivariable Data Using a Graphical User Interface," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i06).
    2. Naderi, Mehrdad & Hung, Wen-Liang & Lin, Tsung-I & Jamalizadeh, Ahad, 2019. "A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 126-138.
    3. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
    4. Josse, Julie & Husson, François, 2016. "missMDA: A Package for Handling Missing Values in Multivariate Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i01).
    5. Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
    6. Wan-Lun Wang & Tsung-I Lin, 2023. "Model-based clustering via mixtures of unrestricted skew normal factor analyzers with complete and incomplete data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 787-817, September.
    7. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    8. Nicholas Tierney & Dianne Cook, 2018. "Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations," Monash Econometrics and Business Statistics Working Papers 14/18, Monash University, Department of Econometrics and Business Statistics.
    9. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    10. Maria Lucia Parrella & Giuseppina Albano & Michele La Rocca & Cira Perna, 2019. "Reconstructing missing data sequences in multivariate time series: an application to environmental data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 359-383, June.
    11. Rabea Aschenbruck & Gero Szepannek & Adalbert F. X. Wilhelm, 2023. "Imputation Strategies for Clustering Mixed-Type Data with Missing Values," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 2-24, April.
    12. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    13. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    14. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    15. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    16. Lara Lopez & Fernando L. Vázquez & Ángela J. Torres & Patricia Otero & Vanessa Blanco & Olga Díaz & Mario Páramo, 2020. "Long-Term Effects of a Cognitive Behavioral Conference Call Intervention on Depression in Non-Professional Caregivers," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    17. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    18. Nicklas Pettersson, 2013. "Bias reduction of finite population imputation by kernel methods," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 139-160, March.
    19. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    20. Sanjeena Subedi & Paul McNicholas, 2014. "Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 167-193, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:34:y:2025:i:2:d:10.1007_s11749-025-00967-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.