IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i3d10.1007_s00180-017-0732-4.html
   My bibliography  Save this article

Some hypothesis tests based on random projection

Author

Listed:
  • Ricardo Fraiman

    (Universidad de la República)

  • Leonardo Moreno

    (Universidad de la República)

  • Sebastian Vallejo

    (Grupo MAS)

Abstract

Two new non-parametric tests are proposed based on continuous one-dimensional random projections. The first one addresses central symmetry and the second addresses independence. These tests are implemented for finite and infinite dimensional (functional) data sets. Both tests are distribution-free and universally consistent. Additionally, different techniques are proposed to improve the power of the tests. Promising results have been obtained by comparing the new tests with existing ones using simulation study. Real data in Banach spaces have been used to develop an application.

Suggested Citation

  • Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-017-0732-4
    DOI: 10.1007/s00180-017-0732-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0732-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0732-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sigeo Aki, 1993. "On nonparametric tests for symmetry inR m," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 787-800, December.
    2. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    3. Neuhaus, Georg & Zhu, Li-Xing, 1998. "Permutation Tests for Reflected Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 129-153, November.
    4. Cuevas, Antonio & Fraiman, Ricardo, 2009. "On depth measures and dual statistics. A methodology for dealing with general data," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 753-766, April.
    5. Heathcote, C. R. & Rachev, S. T. & Cheng, B., 1995. "Testing Multivariate Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 54(1), pages 91-112, July.
    6. David Blough, 1989. "Multivariate symmetry via projection pursuit," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(3), pages 461-475, September.
    7. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    2. Yasser Al Zaim & Mohammad Reza Faridrohani, 2021. "Bayesian random projection-based signal detection for Gaussian scale space random fields," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 503-532, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    2. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    3. Neuhaus, Georg & Zhu, Li-Xing, 1998. "Permutation Tests for Reflected Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 129-153, November.
    4. Koltchinskii, V. I. & Li, Lang, 1998. "Testing for Spherical Symmetry of a Multivariate Distribution," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 228-244, May.
    5. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    6. Henze, N. & Klar, B. & Meintanis, S. G., 2003. "Invariant tests for symmetry about an unspecified point based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 275-297, November.
    7. Guillaume Marrelec & Alain Giron, 2024. "Inferring the finest pattern of mutual independence from data," Statistical Papers, Springer, vol. 65(3), pages 1677-1702, May.
    8. Zhu, Lixing & Zhu, Ruoqing & Song, Song, 2008. "Diagnostic checking for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1841-1859, October.
    9. Sakineh Dehghan & Mohammad Reza Faridrohani & Zahra Barzegar, 2023. "Testing for diagonal symmetry based on center-outward ranking," Statistical Papers, Springer, vol. 64(1), pages 255-283, February.
    10. Yonggang Hu & Qiang Li & Yong Wang & Yi Wu, 2012. "Rayleigh projection depth," Computational Statistics, Springer, vol. 27(3), pages 523-530, September.
    11. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    12. Van Bever, Germain, 2016. "Simplicial bivariate tests for randomness," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 20-25.
    13. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    14. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    16. Fraiman, Ricardo & Svarc, Marcela, 2013. "Resistant estimates for high dimensional and functional data based on random projections," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 326-338.
    17. Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    18. Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.
    19. Christian Genest & Johanna Nešlehová, 2014. "On tests of radial symmetry for bivariate copulas," Statistical Papers, Springer, vol. 55(4), pages 1107-1119, November.
    20. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-017-0732-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.