IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i2d10.1007_s00362-021-01238-z.html
   My bibliography  Save this article

Kronecker delta method for testing independence between two vectors in high-dimension

Author

Listed:
  • Ivair R. Silva

    (Federal University of Ouro Preto)

  • Yan Zhuang

    (Connecticut College)

  • Julio C. A. da Silva Junior

    (Federal University of Vicosa)

Abstract

Conventional methods for testing independence between two Gaussian vectors require sample sizes greater than the number of variables in each vector. Therefore, adjustments are needed for the high-dimensional situation, where the sample size is smaller than the number of variables in at least one of the compared vectors. It is critical to emphasize that the methods available in the literature are unable to control the Type I error probability under the nominal level. This fact is evidenced through an intensive simulation study presented in this paper. To cover this lack, we introduce a valid randomized test based on the Kronecker delta covariance matrices estimator. As an empirical application, based on a sample of companies listed on the stock exchange of Brazil, we test the independence between returns of stocks of different sectors in the COVID-19 pandemic context.

Suggested Citation

  • Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:2:d:10.1007_s00362-021-01238-z
    DOI: 10.1007/s00362-021-01238-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-021-01238-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-021-01238-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "Correlation tests for high-dimensional data using extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 313-331.
    2. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    3. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    4. Shun Yao & Xianyang Zhang & Xiaofeng Shao, 2018. "Testing mutual independence in high dimension via distance covariance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 455-480, June.
    5. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    6. Fang Han & Shizhe Chen & Han Liu, 2017. "Distribution-free tests of independence in high dimensions," Biometrika, Biometrika Trust, vol. 104(4), pages 813-828.
    7. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
    2. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    4. Dörnemann, Nina, 2023. "Likelihood ratio tests under model misspecification in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    6. Matsui, Muneya & Mikosch, Thomas & Roozegar, Rasool & Tafakori, Laleh, 2022. "Distance covariance for random fields," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 280-322.
    7. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    8. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    9. Wang, Shao-Hsuan & Huang, Su-Yun & Chen, Ting-Li, 2020. "On asymptotic normality of cross data matrix-based PCA in high dimension low sample size," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    10. Aki Ishii & Kazuyoshi Yata & Makoto Aoshima, 2021. "Hypothesis tests for high-dimensional covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 599-622, June.
    11. Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.
    12. Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2020. "Testing for independence of high-dimensional variables: ρV-coefficient based approach," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    13. Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
    14. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    15. Deng, Wenli & Wang, Jinglong & Zhang, Riquan, 2022. "Measures of concordance and testing of independence in multivariate structure," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    16. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    17. Teran Hidalgo, Sebastian J. & Wu, Michael C. & Engel, Stephanie M. & Kosorok, Michael R., 2018. "Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 135-155.
    18. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    19. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    20. Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:2:d:10.1007_s00362-021-01238-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.