IDEAS home Printed from
   My bibliography  Save this article

Binary geometric process model for the modeling of longitudinal binary data with trend


  • Jennifer Chan


  • Doris Leung


No abstract is available for this item.

Suggested Citation

  • Jennifer Chan & Doris Leung, 2010. "Binary geometric process model for the modeling of longitudinal binary data with trend," Computational Statistics, Springer, vol. 25(3), pages 505-536, September.
  • Handle: RePEc:spr:compst:v:25:y:2010:i:3:p:505-536
    DOI: 10.1007/s00180-010-0190-8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Lam Yeh & So Kuen Chan, 1998. "Statistical inference for geometric processes with lognormal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 99-112, March.
    2. Lam, Yeh & Zhang, Yuan Lin & Zheng, Yao Hui, 2002. "A geometric process equivalent model for a multistate degenerative system," European Journal of Operational Research, Elsevier, vol. 142(1), pages 21-29, October.
    3. Chan, Jennifer S. K. & Lam, Yeh & Leung, Doris Y. P., 2004. "Statistical inference for geometric processes with gamma distributions," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 565-581, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wan, Wai-Yin & Chan, Jennifer So-Kuen, 2011. "Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 687-702, January.
    2. Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:25:y:2010:i:3:p:505-536. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.