IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v170y2022i1d10.1007_s10584-021-03289-5.html
   My bibliography  Save this article

Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries

Author

Listed:
  • Yi He

    (University of East Anglia)

  • Desmond Manful

    (University of East Anglia)

  • Rachel Warren

    (University of East Anglia)

  • Nicole Forstenhäusler

    (University of East Anglia)

  • Timothy J. Osborn

    (University of East Anglia)

  • Jeff Price

    (University of East Anglia)

  • Rhosanna Jenkins

    (University of East Anglia)

  • Craig Wallace

    (University of East Anglia)

  • Dai Yamazaki

    (The University of Tokyo)

Abstract

We project climate change induced changes in fluvial flood risks for six global warming levels between 1.5 and 4 °C by 2100, focusing on the major river basins of six countries. Daily time series of precipitation, temperature and monthly potential evapotranspiration were generated by combining monthly observations, daily reanalysis data and projected changes in the five CMIP5 GCMs also selected in the ISI-MIP fast track project. These series were then used to drive the HBV hydrological model and the CaMa-Flood hydrodynamic model to simulate river discharge and flood inundation. Our results indicate that return periods of 1 in 100-year floods in the late twentieth century (Q100-20C) are likely to decrease with warming. At 1.5 °C warming, 47%, 66%, 27%, 65%, 62% and 92% of the major basin areas in Brazil, China, Egypt, Ethiopia, Ghana and India respectively experience a decrease in the return period of Q100-20C, increasing to 54%, 81%, 28%, 82%, 86% and 96% with 4 °C warming. The decrease in return periods leads to increased number of people exposed to flood risks, particularly with 4 °C warming, where exposure in the major river basin areas in the six countries increases significantly, ranging from a doubling (China) to more than 50-fold (Egypt). Limiting warming to 1.5 °C would avoid much of these increased risks, resulting in increases ranging from 12 to 1266% for the 6 countries.

Suggested Citation

  • Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
  • Handle: RePEc:spr:climat:v:170:y:2022:i:1:d:10.1007_s10584-021-03289-5
    DOI: 10.1007/s10584-021-03289-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03289-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03289-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nathan S. Debortoli & Pedro Ivo M. Camarinha & José A. Marengo & Regina R. Rodrigues, 2017. "An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 557-582, March.
    2. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    3. Hessel C. Winsemius & Jeroen C. J. H. Aerts & Ludovicus P. H. van Beek & Marc F. P. Bierkens & Arno Bouwman & Brenden Jongman & Jaap C. J. Kwadijk & Willem Ligtvoet & Paul L. Lucas & Detlef P. van Vuu, 2016. "Global drivers of future river flood risk," Nature Climate Change, Nature, vol. 6(4), pages 381-385, April.
    4. Francesco Dottori & Wojciech Szewczyk & Juan-Carlos Ciscar & Fang Zhao & Lorenzo Alfieri & Yukiko Hirabayashi & Alessandra Bianchi & Ignazio Mongelli & Katja Frieler & Richard A. Betts & Luc Feyen, 2018. "Increased human and economic losses from river flooding with anthropogenic warming," Nature Climate Change, Nature, vol. 8(9), pages 781-786, September.
    5. McCartney, Matthew. & Forkuor, Geraldl. & Sood, Aditya. & Amisigo, B. & Hattermann, F. & Muthuwatta, Lal., 2012. "The water resource implications of changing climate in the Volta River Basin [Africa]," IWMI Research Reports H045520, International Water Management Institute.
    6. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    7. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    8. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    9. Claudia Tebaldi & Julie Arblaster, 2014. "Pattern scaling: Its strengths and limitations, and an update on the latest model simulations," Climatic Change, Springer, vol. 122(3), pages 459-471, February.
    10. Timothy Osborn & Craig Wallace & Ian Harris & Thomas Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    11. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    12. Timothy J. Osborn & Craig J. Wallace & Ian C. Harris & Thomas M. Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    13. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    14. Tobias Vetter & Julia Reinhardt & Martina Flörke & Ann Griensven & Fred Hattermann & Shaochun Huang & Hagen Koch & Ilias G. Pechlivanidis & Stefan Plötner & Ousmane Seidou & Buda Su & R. Willem Vervoo, 2017. "Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins," Climatic Change, Springer, vol. 141(3), pages 419-433, April.
    15. Shaochun Huang & Fred Hattermann & Valentina Krysanova & Axel Bronstert, 2013. "Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model," Climatic Change, Springer, vol. 116(3), pages 631-663, February.
    16. Stéphane Hallegatte & Nicola Ranger & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Anand Patwardhan & K. Narayanan & Sub, 2010. "Flood Risks, Climate Change Impacts and Adaptation Benefits in Mumbai: An Initial Assessment of Socio-Economic Consequences of Present and Climate Change Induced Flood Risks and of Possible Adaptation," OECD Environment Working Papers 27, OECD Publishing.
    17. Plesca, I. & Timbe, E. & Exbrayat, J.-F. & Windhorst, D. & Kraft, P. & Crespo, P. & Vaché, K.B. & Frede, H.-G. & Breuer, L., 2012. "Model intercomparison to explore catchment functioning: Results from a remote montane tropical rainforest," Ecological Modelling, Elsevier, vol. 239(C), pages 3-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinling Piao & Wen Chen & Jin-Soo Kim & Wen Zhou & Shangfeng Chen & Peng Hu & Xiaoqing Lan, 2023. "Future changes in rainy season characteristics over East China under continuous warming," Climatic Change, Springer, vol. 176(9), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachel Warren & Oliver Andrews & Sally Brown & Felipe J. Colón-González & Nicole Forstenhäusler & David E. H. J. Gernaat & P. Goodwin & Ian Harris & Yi He & Chris Hope & Desmond Manful & Timothy J. Os, 2022. "Quantifying risks avoided by limiting global warming to 1.5 or 2 °C above pre-industrial levels," Climatic Change, Springer, vol. 172(3), pages 1-16, June.
    2. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    3. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    4. Nigel W. Arnell & Jason A. Lowe & Ben Lloyd-Hughes & Timothy J. Osborn, 2018. "The impacts avoided with a 1.5 °C climate target: a global and regional assessment," Climatic Change, Springer, vol. 147(1), pages 61-76, March.
    5. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.
    7. Qiwei Yu & Alexis K. H. Lau & Kang T. Tsang & Jimmy C. H. Fung, 2018. "Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1011-1038, June.
    8. Tao Yamamoto & So Kazama & Yoshiya Touge & Hayata Yanagihara & Tsuyoshi Tada & Takeshi Yamashita & Hiroyuki Takizawa, 2021. "Evaluation of flood damage reduction throughout Japan from adaptation measures taken under a range of emissions mitigation scenarios," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
    9. Daoping Wang & Katie Jenkins & Nicole Forstenhäusler & Tianyang Lei & Jeff Price & Rachel Warren & Rhosanna Jenkins & Dabo Guan, 2021. "Economic impacts of climate-induced crop yield changes: evidence from agri-food industries in six countries," Climatic Change, Springer, vol. 166(3), pages 1-19, June.
    10. Jeff Price & Rachel Warren & Nicole Forstenhäusler & Craig Wallace & Rhosanna Jenkins & Timothy J. Osborn & D. P. Vuuren, 2022. "Quantification of meteorological drought risks between 1.5 °C and 4 °C of global warming in six countries," Climatic Change, Springer, vol. 174(1), pages 1-16, September.
    11. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    13. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    14. Bethany Robinson & Jonathan D. Herman, 2019. "A framework for testing dynamic classification of vulnerable scenarios in ensemble water supply projections," Climatic Change, Springer, vol. 152(3), pages 431-448, March.
    15. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    16. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    17. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    18. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    19. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.
    20. Roland Azibo Balgah & Kester Azibo Ngwa & Gertrud Rosa Buchenrieder & Jude Ndzifon Kimengsi, 2023. "Impacts of Floods on Agriculture-Dependent Livelihoods in Sub-Saharan Africa: An Assessment from Multiple Geo-Ecological Zones," Land, MDPI, vol. 12(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:170:y:2022:i:1:d:10.1007_s10584-021-03289-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.