IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v132y2015i2p265-278.html
   My bibliography  Save this article

The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: a useful concept to monitor climate change impacts in mountain regions

Author

Listed:
  • Ram Shah
  • Subodh Sharma
  • Peter Haase
  • Sonja Jähnig
  • Steffen Pauls

Abstract

Highland freshwater ecosystems respond rapidly to changing climatic conditions making the biota of mountain streams and rivers particularly vulnerable to climate change. Lack of data and concepts to monitor and manage the potential effects of climate change on freshwater biota is particularly evident in developing countries. Many of the highest and longest mountain systems are found in these regions and provide fundamental water-based services to these countries. The climate sensitive zone (CSZ) concept is based upon changes in community composition along altitudinal gradients that serve as a proxy for climatic gradients. The CSZ characterizes a community of climatically sensitive biota that is likely to react quickly to climate change. We present a framework on how the CSZ can be adapted to and implemented in streams, and demonstrate its applicability for central Himalayan streams of Nepal. We sampled and analyzed benthic invertebrate communities of 58 central Himalayan streams along altitudinal gradients from 1500 to 4500 m asl. A generalized linear model identified altitude as the only significant, albeit indirect, variable explaining benthic invertebrate composition. We applied species turnover scores and threshold indicator taxon analysis (TITAN) to identify the CSZ in central Himalayan streams along the extensive altitudinal gradients. An altitudinal band between 2900 and 3500 m was identified as CSZ and was characterized by 33 indicator taxa. Identifying CSZs in streams can help prioritize resources for monitoring climate change impacts in running waters and help pinpoint stream reaches suitable for testing the efficacy of climate change-directed mitigation practices. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Ram Shah & Subodh Sharma & Peter Haase & Sonja Jähnig & Steffen Pauls, 2015. "The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: a useful concept to monitor climate change impacts in mountain regions," Climatic Change, Springer, vol. 132(2), pages 265-278, September.
  • Handle: RePEc:spr:climat:v:132:y:2015:i:2:p:265-278
    DOI: 10.1007/s10584-015-1417-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1417-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1417-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javaid Laghari, 2013. "Climate change: Melting glaciers bring energy uncertainty," Nature, Nature, vol. 502(7473), pages 617-618, October.
    2. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    3. Dean Jacobsen & Alexander M. Milner & Lee E. Brown & Olivier Dangles, 2012. "Biodiversity under threat in glacier-fed river systems," Nature Climate Change, Nature, vol. 2(5), pages 361-364, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihao Man & Shengquan Che & Changkun Xie & Ruiyuan Jiang & Anze Liang & Hao Wu, 2021. "Effect of Climate Change on CO 2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    2. Basanta Paudel & Zhaofeng Wang & Yili Zhang & Mohan Kumar Rai & Pranesh Kumar Paul, 2021. "Climate Change and Its Impacts on Farmer’s Livelihood in Different Physiographic Regions of the Trans-Boundary Koshi River Basin, Central Himalayas," IJERPH, MDPI, vol. 18(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    3. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Steven G. Pueppke & Margulan K. Iklasov & Volker Beckmann & Sabir T. Nurtazin & Niels Thevs & Sayat Sharakhmetov & Buho Hoshino, 2018. "Challenges for Sustainable Use of the Fish Resources from Lake Balkhash, a Fragile Lake in an Arid Ecosystem," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    5. Shan Zou & Abuduwaili Jilili & Weili Duan & Philippe De Maeyer & Tim Van de Voorde, 2019. "Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    6. Chang Li & Jing Wu & Dehua Li & Yan Jiang & Yijin Wu, 2023. "Study on the Correlation between Life Expectancy and the Ecological Environment around the Cities along the Belt and Road," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    7. Shin Sugiyama & Masahiro Minowa & Yasushi Fukamachi & Shuntaro Hata & Yoshihiro Yamamoto & Tobias Sauter & Christoph Schneider & Marius Schaefer, 2021. "Subglacial discharge controls seasonal variations in the thermal structure of a glacial lake in Patagonia," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Tauheed Ullah Khan & Abdul Mannan & Charlotte E. Hacker & Shahid Ahmad & Muhammad Amir Siddique & Barkat Ullah Khan & Emad Ud Din & Minhao Chen & Chao Zhang & Moazzam Nizami & Xiaofeng Luan, 2021. "Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard ( Panthera uncia ) Habitat in Pakistan," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    9. Peña‐Guerrero, Mayra Daniela & Umirbekov, Atabek & Tarasova, Larisa & Müller, Daniel, 2022. "Comparing the performance of high‐resolution global precipitation products across topographic and climatic gradients of Central Asia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(11), pages 5554-5569.
    10. Jing Wei & Laurent Fontaine & Nicolas Valiente & Peter Dörsch & Dag O. Hessen & Alexander Eiler, 2023. "Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Bing Wang & Su-Yan Pan & Ruo-Yu Ke & Ke Wang & Yi-Ming Wei, 2014. "An overview of climate change vulnerability: a bibliometric analysis based on Web of Science database," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1649-1666, December.
    12. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    13. Xiangyao Meng & Yongqiang Liu & Yan Qin & Weiping Wang & Mengxiao Zhang & Kun Zhang, 2022. "Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    14. Yu, Yang & Yu, Ruide & Chen, Xi & Yu, Guoan & Gan, Miao & Disse, Markus, 2017. "Agricultural water allocation strategies along the oasis of Tarim River in Northwest China," Agricultural Water Management, Elsevier, vol. 187(C), pages 24-36.
    15. Olivier Damette & Stephane Goutte & Qing Pei, 2020. "Climate and nomadic migration in a nonlinear world: evidence of the historical China," Climatic Change, Springer, vol. 163(4), pages 2055-2071, December.
    16. Mengru Wei & Zhe Yuan & Jijun Xu & Mengqi Shi & Xin Wen, 2022. "Attribution Assessment and Prediction of Runoff Change in the Han River Basin, China," IJERPH, MDPI, vol. 19(4), pages 1-22, February.
    17. Stefanie Christmann & Aden Aw-Hassan, 2015. "A participatory method to enhance the collective ability to adapt to rapid glacier loss: the case of mountain communities in Tajikistan," Climatic Change, Springer, vol. 133(2), pages 267-282, November.
    18. Wanlu Liu & Lulu Liu & Jiangbo Gao, 2020. "Adapting to climate change: gaps and strategies for Central Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1439-1459, December.
    19. Gang Deng & Zhiguang Tang & Guojie Hu & Jingwen Wang & Guoqing Sang & Jia Li, 2021. "Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
    20. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:132:y:2015:i:2:p:265-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.