IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v122y2014i1p41-54.html
   My bibliography  Save this article

Indications of a climate effect on Mediterranean fisheries

Author

Listed:
  • Evangelos Tzanatos
  • Dionysios Raitsos
  • George Triantafyllou
  • Stylianos Somarakis
  • Anastasios Tsonis

Abstract

Using the Food and Agriculture Organization’s (FAO) Mediterranean capture fisheries production dataset in conjunction with global and Mediterranean sea surface temperatures, we investigated trends in fisheries landings and landings per unit of effort of commercially important marine organisms, in relation to temperature oscillations. In addition to the overall warming trend, a temperature shift was detected in the Mediterranean Sea in the late 1990s. Fisheries landings fluctuations were examined for the most abundant commercial species (59 species) and showed significant year-to-year correlations with temperature for nearly 60 % of the cases. From these, the majority (~70 %) were negatively related and showed a reduction of 44 % on average. Increasing trends were found, mainly in the landings of species with short life spans, which seem to have benefited from the increase in water temperature. Τhe effect of oceanic warming is apparent in most species or groups of species sharing ecological (e.g. small and medium pelagic, demersal fish) or taxonomic (e.g. cephalopods, crustaceans) traits. A landings-per-unit-of-effort (LPUE) proxy, using data from the seven Mediterranean European Union member states, also showed significant correlation with temperature fluctuations for six out of the eight species examined, indicating the persistence of temperature influence on landings when the fishing effect is accounted for. The speed of response of marine landings to the warming of the Mediterranean Sea possibly shows both the sensitivity and the vulnerable state of the fish stocks and indicates that climate should be examined together with fisheries as a factor shaping stock fluctuations. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Evangelos Tzanatos & Dionysios Raitsos & George Triantafyllou & Stylianos Somarakis & Anastasios Tsonis, 2014. "Indications of a climate effect on Mediterranean fisheries," Climatic Change, Springer, vol. 122(1), pages 41-54, January.
  • Handle: RePEc:spr:climat:v:122:y:2014:i:1:p:41-54
    DOI: 10.1007/s10584-013-0972-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0972-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0972-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Reg Watson & Daniel Pauly, 2001. "Systematic distortions in world fisheries catch trends," Nature, Nature, vol. 414(6863), pages 534-536, November.
    3. William W. L. Cheung & Reg Watson & Daniel Pauly, 2013. "Signature of ocean warming in global fisheries catch," Nature, Nature, vol. 497(7449), pages 365-368, May.
    4. Michael J. Behrenfeld & Robert T. O’Malley & David A. Siegel & Charles R. McClain & Jorge L. Sarmiento & Gene C. Feldman & Allen J. Milligan & Paul G. Falkowski & Ricardo M. Letelier & Emmanuel S. Bos, 2006. "Climate-driven trends in contemporary ocean productivity," Nature, Nature, vol. 444(7120), pages 752-755, December.
    5. Scott C. Doney, 2006. "Plankton in a warmer world," Nature, Nature, vol. 444(7120), pages 695-696, December.
    6. Paloma Martín & Ana Sabatés & Josep Lloret & Javier Martin-Vide, 2012. "Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Me," Climatic Change, Springer, vol. 110(3), pages 925-939, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moutopoulos, Dimitrios K. & Koutsikopoulos, Constantin, 2014. "Fishing strange data in national fisheries statistics of Greece," Marine Policy, Elsevier, vol. 48(C), pages 114-122.
    2. Farahmand, Shekoofeh & Hilmi, Nathalie & Cinar, Mine & Safa, Alain & Lam, Vicky W.Y. & Djoundourian, Salpie & Shahin, Wassim & Ben Lamine, Emna & Schickele, Alexandre & Guidetti, Paolo & Allemand, Den, 2023. "Climate change impacts on Mediterranean fisheries: A sensitivity and vulnerability analysis for main commercial species," Ecological Economics, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Antonio Tulone & Antonino Galatia & Salvatore Lupo & Salvatore Tinervia & Maria Crescimanno, 2019. "What are the effects of sea warming on the fishing industry?," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(2), pages 217-233.
    3. Yan Bai & Xianqiang He & Shujie Yu & Chen-Tung Arthur Chen, 2018. "Changes in the Ecological Environment of the Marginal Seas along the Eurasian Continent from 2003 to 2014," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    4. Brian Pentz & Nicole Klenk, 2020. "Understanding the limitations of current RFMO climate change adaptation strategies: the case of the IATTC and the Eastern Pacific Ocean," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(1), pages 21-39, March.
    5. Mirja Hoins & Tim Eberlein & Christian H Groβmann & Karen Brandenburg & Gert-Jan Reichart & Björn Rost & Appy Sluijs & Dedmer B Van de Waal, 2016. "Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    6. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    7. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    8. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2012. "Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model," Ecological Modelling, Elsevier, vol. 244(C), pages 132-147.
    9. Flora Vincent & Matti Gralka & Guy Schleyer & Daniella Schatz & Miguel Cabrera-Brufau & Constanze Kuhlisch & Andreas Sichert & Silvia Vidal-Melgosa & Kyle Mayers & Noa Barak-Gavish & J. Michel Flores , 2023. "Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    11. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    12. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    13. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    14. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    15. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    16. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    17. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    18. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    19. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    20. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:122:y:2014:i:1:p:41-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.