IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36049-3.html
   My bibliography  Save this article

Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms

Author

Listed:
  • Flora Vincent

    (Weizmann Institute of Science
    European Molecular Biological Laboratory)

  • Matti Gralka

    (Massachusetts Institute of Technology
    Vrije Universiteit Amsterdam)

  • Guy Schleyer

    (Weizmann Institute of Science)

  • Daniella Schatz

    (Weizmann Institute of Science)

  • Miguel Cabrera-Brufau

    (Institut de Ciències del Mar, CSIC)

  • Constanze Kuhlisch

    (Weizmann Institute of Science)

  • Andreas Sichert

    (Massachusetts Institute of Technology
    Max Planck Institute for Marine Microbiology)

  • Silvia Vidal-Melgosa

    (Max Planck Institute for Marine Microbiology
    University of Bremen)

  • Kyle Mayers

    (NORCE Norwegian Research Centre)

  • Noa Barak-Gavish

    (Weizmann Institute of Science)

  • J. Michel Flores

    (Weizmann Institute of Science)

  • Marta Masdeu-Navarro

    (Institut de Ciències del Mar, CSIC)

  • Jorun Karin Egge

    (University of Bergen)

  • Aud Larsen

    (NORCE Norwegian Research Centre
    University of Bergen)

  • Jan-Hendrik Hehemann

    (Max Planck Institute for Marine Microbiology
    University of Bremen)

  • Celia Marrasé

    (Institut de Ciències del Mar, CSIC)

  • Rafel Simó

    (Institut de Ciències del Mar, CSIC)

  • Otto X. Cordero

    (Massachusetts Institute of Technology)

  • Assaf Vardi

    (Weizmann Institute of Science)

Abstract

Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2–4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.

Suggested Citation

  • Flora Vincent & Matti Gralka & Guy Schleyer & Daniella Schatz & Miguel Cabrera-Brufau & Constanze Kuhlisch & Andreas Sichert & Silvia Vidal-Melgosa & Kyle Mayers & Noa Barak-Gavish & J. Michel Flores , 2023. "Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36049-3
    DOI: 10.1038/s41467-023-36049-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36049-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36049-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kara Martin & Katrin Schmidt & Andrew Toseland & Chris A. Boulton & Kerrie Barry & Bánk Beszteri & Corina P. D. Brussaard & Alicia Clum & Chris G. Daum & Emiley Eloe-Fadrosh & Allison Fong & Brian Fos, 2021. "The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. S. A. Amin & L. R. Hmelo & H. M. van Tol & B. P. Durham & L. T. Carlson & K. R. Heal & R. L. Morales & C. T. Berthiaume & M. S. Parker & B. Djunaedi & A. E. Ingalls & M. R. Parsek & M. A. Moran & E. V, 2015. "Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria," Nature, Nature, vol. 522(7554), pages 98-101, June.
    3. Silvia Vidal-Melgosa & Andreas Sichert & T. Ben Francis & Daniel Bartosik & Jutta Niggemann & Antje Wichels & William G. T. Willats & Bernhard M. Fuchs & Hanno Teeling & Dörte Becher & Thomas Schweder, 2021. "Diatom fucan polysaccharide precipitates carbon during algal blooms," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Lionel Guidi & Samuel Chaffron & Lucie Bittner & Damien Eveillard & Abdelhalim Larhlimi & Simon Roux & Youssef Darzi & Stephane Audic & Léo Berline & Jennifer R. Brum & Luis Pedro Coelho & Julio Cesar, 2016. "Plankton networks driving carbon export in the oligotrophic ocean," Nature, Nature, vol. 532(7600), pages 465-470, April.
    5. Michael J. Behrenfeld & Robert T. O’Malley & David A. Siegel & Charles R. McClain & Jorge L. Sarmiento & Gene C. Feldman & Allen J. Milligan & Paul G. Falkowski & Ricardo M. Letelier & Emmanuel S. Bos, 2006. "Climate-driven trends in contemporary ocean productivity," Nature, Nature, vol. 444(7120), pages 752-755, December.
    6. H. James Tripp & Joshua B. Kitner & Michael S. Schwalbach & John W. H. Dacey & Larry J. Wilhelm & Stephen J. Giovannoni, 2008. "SAR11 marine bacteria require exogenous reduced sulphur for growth," Nature, Nature, vol. 452(7188), pages 741-744, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Estelle E. Clerc & Jean-Baptiste Raina & Johannes M. Keegstra & Zachary Landry & Sammy Pontrelli & Uria Alcolombri & Bennett S. Lambert & Valerio Anelli & Flora Vincent & Marta Masdeu-Navarro & Andrea, 2023. "Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2012. "Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model," Ecological Modelling, Elsevier, vol. 244(C), pages 132-147.
    2. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Gurib-Fakim, A. & Smith, L. & Acikgoz, N. & Avato, P. & Bossio, Deborah & Ebi, K. & Goncalves, A. & Heinemann, J. A. & Herrmann, T. M. & Padgham, J. & Pennarz, J. & Scheidegger, U. & Sebastian, L. & T, 2009. "Options to enhance the impact of AKST on development and sustainability goals," IWMI Books, Reports H042792, International Water Management Institute.
    4. Evangelos Tzanatos & Dionysios Raitsos & George Triantafyllou & Stylianos Somarakis & Anastasios Tsonis, 2014. "Indications of a climate effect on Mediterranean fisheries," Climatic Change, Springer, vol. 122(1), pages 41-54, January.
    5. Felix Milke & Jens Meyerjürgens & Meinhard Simon, 2023. "Ecological mechanisms and current systems shape the modular structure of the global oceans’ prokaryotic seascape," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Javier Lopez-Simon & Marina Vila-Nistal & Aleksandra Rosenova & Daniele Corte & Federico Baltar & Manuel Martinez-Garcia, 2023. "Viruses under the Antarctic Ice Shelf are active and potentially involved in global nutrient cycles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Quentin Grafton, R., 2010. "Adaptation to climate change in marine capture fisheries," Marine Policy, Elsevier, vol. 34(3), pages 606-615, May.
    8. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    10. Trang T. H. Nguyen & Emily J. Zakem & Ali Ebrahimi & Julia Schwartzman & Tolga Caglar & Kapil Amarnath & Uria Alcolombri & François J. Peaudecerf & Terence Hwa & Roman Stocker & Otto X. Cordero & Naom, 2022. "Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Kyoko Yarimizu & So Fujiyoshi & Mikihiko Kawai & Luis Norambuena-Subiabre & Emma-Karin Cascales & Joaquin-Ignacio Rilling & Jonnathan Vilugrón & Henry Cameron & Karen Vergara & Jesus Morón-López & Jac, 2020. "Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile," IJERPH, MDPI, vol. 17(20), pages 1-24, October.
    12. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    13. Taelman, Sue Ellen & De Meester, Steven & Schaubroeck, Thomas & Sakshaug, Egil & Alvarenga, Rodrigo A.F. & Dewulf, Jo, 2014. "Accounting for the occupation of the marine environment as a natural resource in life cycle assessment: An exergy based approach," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 1-10.
    14. Joanna Warwick-Dugdale & Funing Tian & Michelle L. Michelsen & Dylan R. Cronin & Karen Moore & Audrey Farbos & Lauren Chittick & Ashley Bell & Ahmed A. Zayed & Holger H. Buchholz & Luis M. Bolanos & R, 2024. "Long-read powered viral metagenomics in the oligotrophic Sargasso Sea," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Huawei Zhu & Liru Xu & Guodong Luan & Tao Zhan & Zepeng Kang & Chunli Li & Xuefeng Lu & Xueli Zhang & Zhiguang Zhu & Yanping Zhang & Yin Li, 2022. "A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Xavier Mayali & Ty J. Samo & Jeff A. Kimbrel & Megan M. Morris & Kristina Rolison & Courtney Swink & Christina Ramon & Young-Mo Kim & Nathalie Munoz-Munoz & Carrie Nicora & Sam Purvine & Mary Lipton &, 2023. "Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Michael Fogarty & Lewis Incze & Katherine Hayhoe & David Mountain & James Manning, 2008. "Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 453-466, June.
    18. Yi-Chun Yeh & Jed A. Fuhrman, 2022. "Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Elígio de Raús Maúre & Genki Terauchi & Joji Ishizaka & Nicholas Clinton & Michael DeWitt, 2021. "Globally consistent assessment of coastal eutrophication," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Gurib-Fakim, Ameenah & Smith, Linda & Acikgoz, Nazimi & Avato, Patrick & Bossio, Deborah A. & Ebi, Kristie. & Goncalves, Andre & Heinemann, Jack A. & Herrmann, Thora Martina & Padgham, Jonathan & Penn, 2009. "Options to enhance the impact of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36049-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.