IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61523-5.html
   My bibliography  Save this article

Defining the ecological strategies of phytoplankton associated bacteria

Author

Listed:
  • Amaranta Focardi

    (University of Technology Sydney)

  • Anna R. Bramucci

    (University of Technology Sydney
    Canada’s Michael Smith Genome Sciences Centre)

  • Penelope Ajani

    (University of Technology Sydney)

  • Abeeha Khalil

    (University of Technology Sydney)

  • Jean-Baptiste Raina

    (University of Technology Sydney
    Université de Perpignan)

  • Justin R. Seymour

    (University of Technology Sydney)

Abstract

Ecological interactions between phytoplankton and bacteria govern the productivity and biogeochemistry of aquatic ecosystems. However, our understanding of these partnerships primarily comes from laboratory-based model systems, meaning that little is known about the establishment and dynamics of these interactions. Here, we tracked the development of the microbiome of 15 newly isolated phytoplankton species for 400 days. After only 20 days, each phytoplankton harboured a unique bacterial assemblage. Within these assemblages, we identify (i) specialist phytoplankton associates, which are bacteria that establish long-term interactions with 1-2 phytoplankton strains; (ii) generalists, which are associated with 3 or more phytoplankton strains; and (iii) transients, which do not develop sustained associations with any phytoplankton strains. Compared to transients, the generalists and specialists are enriched in genes involved in chemotaxis, vitamin synthesis, secondary metabolite production and the ability to uptake specific phytoplankton-derived compounds. Moreover, generalists display greater potential to move between hosts and release antimicrobials. Finally, examination of co-occurrence patterns in oceanographic time-series revealed that generalists and specialists mirror their phytoplankton partner’s abundance in the environment. The divergent genomic characteristics of these discrete bacterial categories highlight different ecological strategies that likely shape phytoplankton microbiomes.

Suggested Citation

  • Amaranta Focardi & Anna R. Bramucci & Penelope Ajani & Abeeha Khalil & Jean-Baptiste Raina & Justin R. Seymour, 2025. "Defining the ecological strategies of phytoplankton associated bacteria," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61523-5
    DOI: 10.1038/s41467-025-61523-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61523-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61523-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunyan Deng & Kui Wang & Zhangxi Hu & Ying-Zhong Tang, 2022. "Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    2. Benjamin J. Tully, 2019. "Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Jed A. Fuhrman, 2009. "Microbial community structure and its functional implications," Nature, Nature, vol. 459(7244), pages 193-199, May.
    4. Jean-Baptiste Raina & Bennett S. Lambert & Donovan H. Parks & Christian Rinke & Nachshon Siboni & Anna Bramucci & Martin Ostrowski & Brandon Signal & Adrian Lutz & Himasha Mendis & Francesco Rubino & , 2022. "Chemotaxis shapes the microscale organization of the ocean’s microbiome," Nature, Nature, vol. 605(7908), pages 132-138, May.
    5. S. A. Amin & L. R. Hmelo & H. M. van Tol & B. P. Durham & L. T. Carlson & K. R. Heal & R. L. Morales & C. T. Berthiaume & M. S. Parker & B. Djunaedi & A. E. Ingalls & M. R. Parsek & M. A. Moran & E. V, 2015. "Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria," Nature, Nature, vol. 522(7554), pages 98-101, June.
    6. Martin T. Croft & Andrew D. Lawrence & Evelyne Raux-Deery & Martin J. Warren & Alison G. Smith, 2005. "Algae acquire vitamin B12 through a symbiotic relationship with bacteria," Nature, Nature, vol. 438(7064), pages 90-93, November.
    7. Xavier Mayali & Ty J. Samo & Jeff A. Kimbrel & Megan M. Morris & Kristina Rolison & Courtney Swink & Christina Ramon & Young-Mo Kim & Nathalie Munoz-Munoz & Carrie Nicora & Sam Purvine & Mary Lipton &, 2023. "Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier Mayali & Ty J. Samo & Jeff A. Kimbrel & Megan M. Morris & Kristina Rolison & Courtney Swink & Christina Ramon & Young-Mo Kim & Nathalie Munoz-Munoz & Carrie Nicora & Sam Purvine & Mary Lipton &, 2023. "Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Corentin Hochart & Lucas Paoli & Hans-Joachim Ruscheweyh & Guillem Salazar & Emilie Boissin & Sarah Romac & Julie Poulain & Guillaume Bourdin & Guillaume Iwankow & Clémentine Moulin & Maren Ziegler & , 2023. "Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Susheel Bhanu Busi & Massimo Bourquin & Stilianos Fodelianakis & Grégoire Michoud & Tyler J. Kohler & Hannes Peter & Paraskevi Pramateftaki & Michail Styllas & Matteo Tolosano & Vincent Staercke & Mar, 2022. "Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Shousong Zhu & Lauren Higa & Antonia Barela & Caitlyn Lee & Yinhua Chen & Zhi-Yan Du, 2023. "Microalgal Consortia for Waste Treatment and Valuable Bioproducts," Energies, MDPI, vol. 16(2), pages 1-23, January.
    5. Yunyan Deng & Kui Wang & Zhangxi Hu & Ying-Zhong Tang, 2022. "Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    6. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Kapil Amarnath & Avaneesh V. Narla & Sammy Pontrelli & Jiajia Dong & Jack Reddan & Brian R. Taylor & Tolga Caglar & Julia Schwartzman & Uwe Sauer & Otto X. Cordero & Terence Hwa, 2023. "Stress-induced metabolic exchanges between complementary bacterial types underly a dynamic mechanism of inter-species stress resistance," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    9. Yuxiang Zhao & Zishu Liu & Baofeng Zhang & Jingjie Cai & Xiangwu Yao & Meng Zhang & Ye Deng & Baolan Hu, 2023. "Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Kyoko Yarimizu & So Fujiyoshi & Mikihiko Kawai & Luis Norambuena-Subiabre & Emma-Karin Cascales & Joaquin-Ignacio Rilling & Jonnathan Vilugrón & Henry Cameron & Karen Vergara & Jesus Morón-López & Jac, 2020. "Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile," IJERPH, MDPI, vol. 17(20), pages 1-24, October.
    11. Leon Dlugosch & Anja Poehlein & Bernd Wemheuer & Birgit Pfeiffer & Thomas H. Badewien & Rolf Daniel & Meinhard Simon, 2022. "Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Estelle E. Clerc & Jean-Baptiste Raina & Johannes M. Keegstra & Zachary Landry & Sammy Pontrelli & Uria Alcolombri & Bennett S. Lambert & Valerio Anelli & Flora Vincent & Marta Masdeu-Navarro & Andrea, 2023. "Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Soraya Mirzaei & Mojtaba Tefagh, 2024. "GEM-based computational modeling for exploring metabolic interactions in a microbial community," PLOS Computational Biology, Public Library of Science, vol. 20(6), pages 1-21, June.
    14. Robab Salami & Masoumeh Kordi & Parisa Bolouri & Nasser Delangiz & Behnam Asgari Lajayer, 2021. "Algae-Based Biorefinery as a Sustainable Renewable Resource," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1349-1365, December.
    15. Doulcier, Guilhem & Lambert, Amaury, 2024. "Neutral diversity in experimental metapopulations," Theoretical Population Biology, Elsevier, vol. 158(C), pages 89-108.
    16. Paul O. Sheridan & Yiyu Meng & Tom A. Williams & Cécile Gubry-Rangin, 2023. "Genomics of soil depth niche partitioning in the Thaumarchaeota family Gagatemarchaeaceae," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Jennifer L. Matthews & Abeeha Khalil & Nachshon Siboni & Jeremy Bougoure & Paul Guagliardo & Unnikrishnan Kuzhiumparambil & Matthew DeMaere & Nine M. Le Reun & Justin R. Seymour & David J. Suggett & J, 2023. "Coral endosymbiont growth is enhanced by metabolic interactions with bacteria," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Asadullah Gujar & Muhammmad Ahsan Asghar & Muneefah Abdullah Alenezi & Muhammad Saleem Kubar & Kashif Ali Kubar & Ali Raza & Khansa Saleem & Hafiz Hassan Javed & Abu Zar Ghafoor & Muhammad Iftikhar Hu, 2025. "Assessment of the phycosphere microbial dynamics of microbial community associated with red algae culture under different cultural conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 1-20, January.
    19. Paul O. Sheridan & Yiyu Meng & Tom A. Williams & Cécile Gubry-Rangin, 2022. "Recovery of Lutacidiplasmatales archaeal order genomes suggests convergent evolution in Thermoplasmatota," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Sheng-Nan Chen & Pan-Lu Shang & Peng-Liang Kang & Man-Man Du, 2020. "Metabolic Functional Community Diversity of Associated Bacteria during the Degradation of Phytoplankton from a Drinking Water Reservoir," IJERPH, MDPI, vol. 17(5), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61523-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.