IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28128-8.html
   My bibliography  Save this article

Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome

Author

Listed:
  • Leon Dlugosch

    (University of Oldenburg)

  • Anja Poehlein

    (Georg-August University of Göttingen)

  • Bernd Wemheuer

    (Georg-August University of Göttingen)

  • Birgit Pfeiffer

    (Georg-August University of Göttingen)

  • Thomas H. Badewien

    (University of Oldenburg)

  • Rolf Daniel

    (Georg-August University of Göttingen)

  • Meinhard Simon

    (University of Oldenburg
    Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB))

Abstract

Microbial communities are major drivers of global elemental cycles in the oceans due to their high abundance and enormous taxonomic and functional diversity. Recent studies assessed microbial taxonomic and functional biogeography in global oceans but microbial functional biogeography remains poorly studied. Here we show that in the near-surface Atlantic and Southern Ocean between 62°S and 47°N microbial communities exhibit distinct taxonomic and functional adaptations to regional environmental conditions. Richness and diversity showed maxima around 40° latitude and intermediate temperatures, especially in functional genes (KEGG-orthologues, KOs) and gene profiles. A cluster analysis yielded three clusters of KOs but five clusters of genes differing in the abundance of genes involved in nutrient and energy acquisition. Gene profiles showed much higher distance-decay rates than KO and taxonomic profiles. Biotic factors were identified as highly influential in explaining the observed patterns in the functional profiles, whereas temperature and biogeographic province mainly explained the observed taxonomic patterns. Our results thus indicate fine-tuned genetic adaptions of microbial communities to regional biotic and environmental conditions in the Atlantic and Southern Ocean.

Suggested Citation

  • Leon Dlugosch & Anja Poehlein & Bernd Wemheuer & Birgit Pfeiffer & Thomas H. Badewien & Rolf Daniel & Meinhard Simon, 2022. "Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28128-8
    DOI: 10.1038/s41467-022-28128-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28128-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28128-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jed A. Fuhrman, 2009. "Microbial community structure and its functional implications," Nature, Nature, vol. 459(7244), pages 193-199, May.
    2. Mark J. Costello & Peter Tsai & Pui Shan Wong & Alan Kwok Lun Cheung & Zeenatul Basher & Chhaya Chaudhary, 2017. "Marine biogeographic realms and species endemicity," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Catalina Pimiento & Camille Albouy & Daniele Silvestro & Théophile L. Mouton & Laure Velez & David Mouillot & Aaron B. Judah & John N. Griffin & Fabien Leprieur, 2023. "Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    4. Lei Zhang & Yu Cheng & Guang Gao & Jiahu Jiang, 2019. "Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China," IJERPH, MDPI, vol. 16(20), pages 1-18, October.
    5. Yangyi Zhou & Jiangping Wang, 2023. "The Composition and Assembly of Soil Microbial Communities Differ across Vegetation Cover Types of Urban Green Spaces," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    6. Elise Vaumourin & Patrick Gasqui & Jean-Philippe Buffet & Jean-Louis Chapuis & Benoît Pisanu & Elisabeth Ferquel & Muriel Vayssier-Taussat & Gwenaël Vourc’h, 2013. "A Probabilistic Model in Cross-Sectional Studies for Identifying Interactions between Two Persistent Vector-Borne Pathogens in Reservoir Populations," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    7. Heneghan, Ryan F. & Everett, Jason D. & Sykes, Patrick & Batten, Sonia D. & Edwards, Martin & Takahashi, Kunio & Suthers, Iain M. & Blanchard, Julia L. & Richardson, Anthony J., 2020. "A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition," Ecological Modelling, Elsevier, vol. 435(C).
    8. Kathrin Busch & Beate M. Slaby & Wolfgang Bach & Antje Boetius & Ina Clefsen & Ana Colaço & Marie Creemers & Javier Cristobo & Luisa Federwisch & Andre Franke & Asimenia Gavriilidou & Andrea Hethke & , 2022. "Biodiversity, environmental drivers, and sustainability of the global deep-sea sponge microbiome," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Xiaoping Xin & Jiali Shentu & Tiequan Zhang & Xiaoe Yang & Virupax C. Baligar & Zhenli He, 2022. "Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    10. Maxime Dubart & Pascal Alonso & Didac Barroso-Bergadà & N. Becker & Kevine Bethune & David Bohan & Christophe Boury & Marine Cambon & Elsa Canard & Emilie Chancerel & Julien Chiquet & Patrice David & , 2022. "Coupling ecological network analysis with high-throughput sequencing-based surveys: Lessons from the next-generation biomonitoring project," Post-Print hal-03634351, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28128-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.