IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012233.html
   My bibliography  Save this article

GEM-based computational modeling for exploring metabolic interactions in a microbial community

Author

Listed:
  • Soraya Mirzaei
  • Mojtaba Tefagh

Abstract

Microbial communities play fundamental roles in every complex ecosystem, such as soil, sea and the human body. The stability and diversity of the microbial community depend precisely on the composition of the microbiota. Any change in the composition of these communities affects microbial functions. An important goal of studying the interactions between species is to understand the behavior of microbes and their responses to perturbations. These interactions among species are mediated by the exchange of metabolites within microbial communities. We developed a computational model for the microbial community that has a separate compartment for exchanging metabolites. This model can predict possible metabolites that cause competition, commensalism, and mutual interactions between species within a microbial community. Our constraint-based community metabolic modeling approach provides insights to elucidate the pattern of metabolic interactions for each common metabolite between two microbes. To validate our approach, we used a toy model and a syntrophic co-culture of Desulfovibrio vulgaris and Methanococcus maripaludis, as well as another in co-culture between Geobacter sulfurreducens and Rhodoferax ferrireducens. For a more general evaluation, we applied our algorithm to the honeybee gut microbiome, composed of seven species, and the epiphyte strain Pantoea eucalypti 299R. The epiphyte strain Pe299R has been previously studied and cultured with six different phyllosphere bacteria. Our algorithm successfully predicts metabolites, which imply mutualistic, competitive, or commensal interactions. In contrast to OptCom, MRO, and MICOM algorithms, our COMMA algorithm shows that the potential for competitive interactions between an epiphytic species and Pe299R is not significant. These results are consistent with the experimental measurements of population density and reproductive success of the Pe299R strain.Author summary: Microbial consortia play critical roles in human health and environmental biogeochemical cycles. Studying interactions and communications among organisms is integral for understanding the role of individual microbes in microbial communities. Organisms release and consume metabolites in the extracellular environment, which dictate the assembly and interactions of communities. Researchers have indeed used constraint-based metabolic modeling to analyze the metabolic interactions for multi-organism communities. We propose a computational framework to predict metabolic interactions between pairs of microbial species. We investigate whether, for a specific shared metabolite in the extracellular environment, the two species may have competitive, parasitic, or commensal interactions. These results of our algorithms may help identify important metabolites that shape the interaction patterns in natural communities, and can also be useful for designing media. We demonstrate the applicability of our method by applying it to well-known communities in the honey bee gut microbiota and on leaf surfaces. We then compare the results of our algorithm for the phyllosphere bacterial community with empirical data.

Suggested Citation

  • Soraya Mirzaei & Mojtaba Tefagh, 2024. "GEM-based computational modeling for exploring metabolic interactions in a microbial community," PLOS Computational Biology, Public Library of Science, vol. 20(6), pages 1-21, June.
  • Handle: RePEc:plo:pcbi00:1012233
    DOI: 10.1371/journal.pcbi.1012233
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012233
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012233&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niels Klitgord & Daniel Segrè, 2010. "Environments that Induce Synthetic Microbial Ecosystems," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-17, November.
    2. Jed A. Fuhrman, 2009. "Microbial community structure and its functional implications," Nature, Nature, vol. 459(7244), pages 193-199, May.
    3. Fredrik H. Karlsson & Valentina Tremaroli & Intawat Nookaew & Göran Bergström & Carl Johan Behre & Björn Fagerberg & Jens Nielsen & Fredrik Bäckhed, 2013. "Gut metagenome in European women with normal, impaired and diabetic glucose control," Nature, Nature, vol. 498(7452), pages 99-103, June.
    4. Shiri Freilich & Raphy Zarecki & Omer Eilam & Ella Shtifman Segal & Christopher S. Henry & Martin Kupiec & Uri Gophna & Roded Sharan & Eytan Ruppin, 2011. "Competitive and cooperative metabolic interactions in bacterial communities," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanessa R. Marcelino & Caitlin Welsh & Christian Diener & Emily L. Gulliver & Emily L. Rutten & Remy B. Young & Edward M. Giles & Sean M. Gibbons & Chris Greening & Samuel C. Forster, 2023. "Disease-specific loss of microbial cross-feeding interactions in the human gut," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Li Xie & Wenying Shou, 2021. "Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Wenwen Diao & Liang Guo & Qiang Ding & Cong Gao & Guipeng Hu & Xiulai Chen & Yang Li & Linpei Zhang & Wei Chen & Jian Chen & Liming Liu, 2021. "Reprogramming microbial populations using a programmed lysis system to improve chemical production," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Xianglai Li & Zhao Zhou & Wenna Li & Yajun Yan & Xiaolin Shen & Jia Wang & Xinxiao Sun & Qipeng Yuan, 2022. "Design of stable and self-regulated microbial consortia for chemical synthesis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Lei Zhang & Yu Cheng & Guang Gao & Jiahu Jiang, 2019. "Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China," IJERPH, MDPI, vol. 16(20), pages 1-18, October.
    7. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Leon Dlugosch & Anja Poehlein & Bernd Wemheuer & Birgit Pfeiffer & Thomas H. Badewien & Rolf Daniel & Meinhard Simon, 2022. "Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    10. Jim Parker & Claire O’Brien & Jason Hawrelak & Felice L. Gersh, 2022. "Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    11. repec:plo:pone00:0064567 is not listed on IDEAS
    12. Edoardo Pasolli & Duy Tin Truong & Faizan Malik & Levi Waldron & Nicola Segata, 2016. "Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-26, July.
    13. Doulcier, Guilhem & Lambert, Amaury, 2024. "Neutral diversity in experimental metapopulations," Theoretical Population Biology, Elsevier, vol. 158(C), pages 89-108.
    14. Zihan Yue & Kun Yuan & Mayuko Seki & Shin-Ichiro Agake & Keisuke Matsumura & Naohisa Okita & Wako Naoi & Katsuhiko Naoi & Koki Toyota & Haruo Tanaka & Soh Sugihara & Michiko Yasuda & Naoko Ohkama-Ohts, 2024. "Comparative Analysis of Japanese Soils: Exploring Power Generation Capability in Relation to Bacterial Communities," Sustainability, MDPI, vol. 16(11), pages 1-16, May.
    15. Luomeijie Chen & Miao Zhao & Xi Li & Yuyuan Li & Jinshui Wu, 2025. "Effect of High-Strength Wastewater on Formation Process and Characteristics of Hydrophyte Periphytic Biofilms," Sustainability, MDPI, vol. 17(6), pages 1-18, March.
    16. Kumar P Mainali & Sharon Bewick & Peter Thielen & Thomas Mehoke & Florian P Breitwieser & Shishir Paudel & Arjun Adhikari & Joshua Wolfe & Eric V Slud & David Karig & William F Fagan, 2017. "Statistical analysis of co-occurrence patterns in microbial presence-absence datasets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
    17. Seung Jin Han & Kyoung Hwa Ha & Ja Young Jeon & Hae Jin Kim & Kwan Woo Lee & Dae Jung Kim, 2015. "Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome," IJERPH, MDPI, vol. 12(9), pages 1-14, September.
    18. repec:plo:pcbi00:1005544 is not listed on IDEAS
    19. Zengliang Jiang & Lai-bao Zhuo & Yan He & Yuanqing Fu & Luqi Shen & Fengzhe Xu & Wanglong Gou & Zelei Miao & Menglei Shuai & Yuhui Liang & Congmei Xiao & Xinxiu Liang & Yunyi Tian & Jiali Wang & Jun T, 2022. "The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Yangyi Zhou & Jiangping Wang, 2023. "The Composition and Assembly of Soil Microbial Communities Differ across Vegetation Cover Types of Urban Green Spaces," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    21. Koji Hosomi & Mayu Saito & Jonguk Park & Haruka Murakami & Naoko Shibata & Masahiro Ando & Takahiro Nagatake & Kana Konishi & Harumi Ohno & Kumpei Tanisawa & Attayeb Mohsen & Yi-An Chen & Hitoshi Kawa, 2022. "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    22. Xiaoxiao Yuan & Ruirui Wang & Bing Han & ChengJun Sun & Ruimin Chen & Haiyan Wei & Linqi Chen & Hongwei Du & Guimei Li & Yu Yang & Xiaojuan Chen & Lanwei Cui & Zhenran Xu & Junfen Fu & Jin Wu & Wei Gu, 2022. "Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.