IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i2p379-398.html
   My bibliography  Save this article

Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment

Author

Listed:
  • Julia Bosiö
  • Margareta Johansson
  • Terry Callaghan
  • Bernt Johansen
  • Torben Christensen

Abstract

One of the major concerns regarding climate change in high latitudes is the potential feedback from greenhouse gases (GHG) being released from thawing peat soils. In this paper we show how vegetational patterns and associated GHG fluxes in subarctic palsa (peat mounds with a permanently frozen core) mires can be linked to climate, based on field observations from fifteen palsa sites distributed in northern Fennoscandia. Fine resolution (100 m) land cover data are combined with projections of future climate for the 21st century in order to model the potential future distribution of palsa vegetation in northern Fennoscandia. Site scale climate-vegetational relationships for two vegetation types are described by a climate suitability index computed from the field observations. Our results indicate drastic changes in the palsa vegetational patterns over the coming decades with a 97 % reduction in dry hummock areas by 2041–2060 compared to the 1961–1990 areal coverage. The impact of these changes on the carbon balance is a decrease in the efflux of CO 2 from 130 kilotonnes C y −1 to a net uptake of 11 kilotonnes C y −1 and a threefold increase in the efflux of CH 4 from 6 to 18 kilotonnes C y −1 over the same period and over the 5,520 km 2 area of palsa mires. The combined effect is equivalent to a slight decrease in CO 2 -C emissions, from 182 to 152 kilotonnes C y −1 . Main uncertainties involve the ability of the vegetation community to adapt to new conditions, and long-term changes in hydrology due to absence of ice and frost heaving. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Julia Bosiö & Margareta Johansson & Terry Callaghan & Bernt Johansen & Torben Christensen, 2012. "Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment," Climatic Change, Springer, vol. 115(2), pages 379-398, November.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:2:p:379-398
    DOI: 10.1007/s10584-012-0445-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0445-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0445-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valeria V. Popova & Andrey B. Shmakin, 2009. "The influence of seasonal climatic parameters on the permafrost thermal regime, West Siberia, Russia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(1), pages 41-56, January.
    2. Bernd Etzelmüller & Eva S. Flo Heggem & N. Sharkhuu & Regula Frauenfelder & Andreas Kääb & Clyde Goulden, 2006. "Mountain permafrost distribution modelling using a multi‐criteria approach in the Hövsgöl area, northern Mongolia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 17(2), pages 91-104, April.
    3. Andrea H. Lloyd & Kenji Yoshikawa & Christopher L. Fastie & Larry Hinzman & Matthew Fraver, 2003. "Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 14(2), pages 93-101, April.
    4. Daniel Riseborough & Nikolay Shiklomanov & Bernd Etzelmüller & Stephan Gruber & Sergei Marchenko, 2008. "Recent advances in permafrost modelling," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(2), pages 137-156, April.
    5. Ellen Dorrepaal & Sylvia Toet & Richard S. P. van Logtestijn & Elferra Swart & Martine J. van de Weg & Terry V. Callaghan & Rien Aerts, 2009. "Carbon respiration from subsurface peat accelerated by climate warming in the subarctic," Nature, Nature, vol. 460(7255), pages 616-619, July.
    6. S.L. Smith & V.E. Romanovsky & A.G. Lewkowicz & C.R. Burn & M. Allard & G.D. Clow & K. Yoshikawa & J. Throop, 2010. "Thermal state of permafrost in North America: a contribution to the international polar year," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(2), pages 117-135, April.
    7. T. E. Osterkamp & V. E. Romanovsky, 1999. "Evidence for warming and thawing of discontinuous permafrost in Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 10(1), pages 17-37, January.
    8. Jerry Brown & Vladimir E. Romanovsky, 2008. "Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(2), pages 255-260, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Bosiö & Christian Stiegler & Margareta Johansson & Herbert Mbufong & Torben Christensen, 2014. "Increased photosynthesis compensates for shorter growing season in subarctic tundra—8 years of snow accumulation manipulations," Climatic Change, Springer, vol. 127(2), pages 321-334, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madeleine C. Garibaldi & Philip P. Bonnaventure & Scott F. Lamoureux, 2021. "Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 19-34, January.
    2. Alain Lubini Tshumuka & Abdelkader Krimi & Musandji Fuamba, 2022. "Modeling Heat Transfer through Permafrost Soil Subjected to Seasonal Freeze-Thaw," Land, MDPI, vol. 11(10), pages 1-19, October.
    3. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    4. Jinting Guo & Yuanman Hu & Zaiping Xiong & Xiaolu Yan & Chunlin Li & Rencang Bu, 2017. "Variations in Growing-Season NDVI and Its Response to Permafrost Degradation in Northeast China," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    5. Christian Huggel & Dáithí Stone & Hajo Eicken & Gerrit Hansen, 2015. "Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies," Climatic Change, Springer, vol. 133(3), pages 453-467, December.
    6. Dongyu Yang & Yang Xiao & Miao Li & Haoran Man & Dongliang Luo & Shuying Zang & Luhe Wan, 2024. "Quantitative Changes in the Surface Frozen Days and Potential Driving Factors in Northern Northeastern China," Land, MDPI, vol. 13(3), pages 1-22, February.
    7. L. Bombonato & R. Gerdol, 2012. "Manipulating snow cover in an alpine bog: effects on ecosystem respiration and nutrient content in soil and microbes," Climatic Change, Springer, vol. 114(2), pages 261-272, September.
    8. Suzanne E. Tank & Jorien E. Vonk & Michelle A. Walvoord & James W. McClelland & Isabelle Laurion & Benjamin W. Abbott, 2020. "Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 358-370, July.
    9. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    10. Mikel González-Eguino & Marc B. Neumann, 2016. "Significant implications of permafrost thawing for climate change control," Climatic Change, Springer, vol. 136(2), pages 381-388, May.
    11. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    12. Komi S Messan & Robert M Jones & Stacey J Doherty & Karen Foley & Thomas A Douglas & Robyn A Barbato, 2020. "The role of changing temperature in microbial metabolic processes during permafrost thaw," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    13. Seth William Campbell & Martin Briggs & Samuel G. Roy & Thomas A. Douglas & Stephanie Saari, 2021. "Ground‐penetrating radar, electromagnetic induction, terrain, and vegetation observations coupled with machine learning to map permafrost distribution at Twelvemile Lake, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(3), pages 407-426, July.
    14. Łukasz Radosz & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "The Soil Respiration of Coal Mine Heaps’ Novel Ecosystems in Relation to Biomass and Biotic Parameters," Energies, MDPI, vol. 16(20), pages 1-24, October.
    15. Jambaljav Yamkhin & Gansukh Yadamsuren & Temuujin Khurelbaatar & Tsogt‐Erdene Gansukh & Undrakhtsetseg Tsogtbaatar & Saruulzaya Adiya & Amarbayasgalan Yondon & Dashtseren Avirmed & Sharkhuu Natsagdorj, 2022. "Spatial distribution mapping of permafrost in Mongolia using TTOP," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(4), pages 386-405, October.
    16. Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
    17. Ilmo T. Kukkonen & Elli Suhonen & Ekaterina Ezhova & Hanna Lappalainen & Victor Gennadinik & Olga Ponomareva & Andrey Gravis & Victoria Miles & Markku Kulmala & Vladimir Melnikov & Dmitry Drozdov, 2020. "Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, north‐west Siberia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 264-280, April.
    18. A. Britta K. Sannel, 2020. "Ground temperature and snow depth variability within a subarctic peat plateau landscape," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 255-263, April.
    19. Guibiao Yang & Zhihu Zheng & Benjamin W. Abbott & David Olefeldt & Christian Knoblauch & Yutong Song & Luyao Kang & Shuqi Qin & Yunfeng Peng & Yuanhe Yang, 2023. "Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:2:p:379-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.