IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v10y1999i1p17-37.html
   My bibliography  Save this article

Evidence for warming and thawing of discontinuous permafrost in Alaska

Author

Listed:
  • T. E. Osterkamp
  • V. E. Romanovsky

Abstract

Data show that permafrost temperatures along a north–south transect of Alaska from Old Man to Gulkana and at Healy generally warmed in the late 1980s to 1996. This trend was not followed at Eagle, about 330 km east of the transect. Estimates of the magnitude of the warming at the permafrost table ranged from 0.5°C to 1.5°C. Warming rates near the permafrost table were about 0.05 to 0.2°C a−1. No reliable trends in the depth of the base of ice‐bearing permafrost or in the depth of the 0°C isotherm could be detected. Thermal offset allowed mean annual temperatures at the permafrost table to remain below 0°C with ground surface temperatures up to 2.5°C for a period of 8 years. The observed warming has probably caused discontinuous permafrost in marginal areas to begin thawing. Thawing permafrost and thermokarst have been observed at several sites. Thawing rates at the permafrost table at two sites were about 0.1 m a−1, indicating time scales of the order of a century to thaw the top 10 metres of ice‐rich permafrost. Calculated thawing rates at the permafrost base are an order of magnitude smaller. Calibrated numerical models indicate that the permafrost warmed in the late 1960s and early 1970s in response to changes in air temperatures and snow covers. Additional warming in the late 1970s was caused by an increase in air temperatures beginning in 1977. Permafrost temperatures were nearly stable during the 1980s and then warmed again from the late 1980s to 1996, primarily in response to increased snow depths. This interpretation appears to be valid for all the sites in the region of the transect and at Healy. Copyright © 1999 John Wiley & Sons, Ltd. Des données montrent que les températures du pergélisol selon un transect Nord–Sud au travers de l'Alaska de Old Man jusqu'à Gulkana et à Healy se sont généralement élevées depuis la fin des années 80 jusqu'à 1996. Cette tendance ne se retrouve pas à Eagle, environ 330 km à l'Est du transect. Des estimations de l'amplitude du réchauffement au niveau de la table du pergélisol varient de 0.5°C à 1.5°C. Les vitesses du réchauffement près de la table du pergélisol ont été d'environ 0.05 à 0.2°C par an. Aucune tendance certaine à la base du pergélisol riche en glace ou à la profondeur de l'isotherme de 0°C n'a pu être détectée. La compensation thermique a permis de maintenir la table du pergélisol sous 0°C bien que les températures de surface aient été supérieures à 2.5°C pendant une période de 8 ans. Le réchauffement observé a probablement causé un début de fonte dans des régions marginales du pergélisol discontinu. Le dégel du pergélisol ainsi que des phénomèes thermokarstiques ont été observés dans plusieurs sites. Les vitesses de dégel à la table du pergélisol en deux sites ont été de l'ordre d'environ 0.1 m par an, indiquant une échelle de temps de l'ordre de un siècle pour dégeler les 10 m sommitaux de pergélisol riche en glace. Les vitesses de dégel calculées pour la base du pergélisol sont un ordre de grandeur plus petit. Des modèles numériques calibrés indiquent que le pergélisol s'est réchauffé dans les dernières années 60 et au début des années 70 en réponse aux changements des températures de l'air et ceux de la couverture de neige. Un réchauffement supplémentaire à la fin des années 70 a été causé par une augmentation de la température de l'air qui a débuté en 1977. Les températures du pergélisol ont été presque stables pendant les années 1980 et se sont réchauffées de nouveau depuis la fin des années 1980 jusqu'à 1996, principalement à la suite d'une augmentation de l'épaisseur de neige. Cette interprétation parait valable pour tous les sites dans la région du transect et à Healy. Copyright © 1999 John Wiley & Sons, Ltd.

Suggested Citation

  • T. E. Osterkamp & V. E. Romanovsky, 1999. "Evidence for warming and thawing of discontinuous permafrost in Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 10(1), pages 17-37, January.
  • Handle: RePEc:wly:perpro:v:10:y:1999:i:1:p:17-37
    DOI: 10.1002/(SICI)1099-1530(199901/03)10:13.0.CO;2-4
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:13.0.CO;2-4
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1099-1530(199901/03)10:13.0.CO;2-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seth William Campbell & Martin Briggs & Samuel G. Roy & Thomas A. Douglas & Stephanie Saari, 2021. "Ground‐penetrating radar, electromagnetic induction, terrain, and vegetation observations coupled with machine learning to map permafrost distribution at Twelvemile Lake, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(3), pages 407-426, July.
    2. Komi S Messan & Robert M Jones & Stacey J Doherty & Karen Foley & Thomas A Douglas & Robyn A Barbato, 2020. "The role of changing temperature in microbial metabolic processes during permafrost thaw," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    3. Ilmo T. Kukkonen & Elli Suhonen & Ekaterina Ezhova & Hanna Lappalainen & Victor Gennadinik & Olga Ponomareva & Andrey Gravis & Victoria Miles & Markku Kulmala & Vladimir Melnikov & Dmitry Drozdov, 2020. "Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, north‐west Siberia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 264-280, April.
    4. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    5. Julia Bosiö & Margareta Johansson & Terry Callaghan & Bernt Johansen & Torben Christensen, 2012. "Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment," Climatic Change, Springer, vol. 115(2), pages 379-398, November.
    6. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    7. Jambaljav Yamkhin & Gansukh Yadamsuren & Temuujin Khurelbaatar & Tsogt‐Erdene Gansukh & Undrakhtsetseg Tsogtbaatar & Saruulzaya Adiya & Amarbayasgalan Yondon & Dashtseren Avirmed & Sharkhuu Natsagdorj, 2022. "Spatial distribution mapping of permafrost in Mongolia using TTOP," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(4), pages 386-405, October.
    8. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:10:y:1999:i:1:p:17-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.