IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p273-d1343183.html
   My bibliography  Save this article

Quantitative Changes in the Surface Frozen Days and Potential Driving Factors in Northern Northeastern China

Author

Listed:
  • Dongyu Yang

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China
    Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin 150025, China)

  • Yang Xiao

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China
    Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin 150025, China)

  • Miao Li

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China
    Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin 150025, China)

  • Haoran Man

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China
    Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin 150025, China)

  • Dongliang Luo

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Shuying Zang

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China
    Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin 150025, China)

  • Luhe Wan

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China
    Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin 150025, China)

Abstract

Surface freezing and thawing processes pose significant influences on surface water and energy balances, which, in turn, affect vegetation growth, soil moisture, carbon cycling, and terrestrial ecosystems. At present, the changes in surface freezing and thawing states are hotspots of ecological research, but the variations of surface frozen days (SFDs) are less studied, especially in the permafrost areas covered with boreal forest, and the influence of the environmental factors on the SFDs is not clear. Utilizing the Advanced Microwave Scanning Radiometer for EOS (AMSRE) and Microwave Scanning Radiometer 2 (AMSR2) brightness temperature data, this study applies the Freeze–Thaw Discriminant Function Algorithm (DFA) to explore the spatiotemporal variability features of SFDs in the Northeast China Permafrost Zone (NCPZ) and the relationship between the permafrost distribution and the spatial variability characteristics of SFDs; additionally, the Optimal Parameters-based Geographical Detector is employed to determine the factors that affect SFDs. The results showed that the SFDs in the NCPZ decreased with a rate of −0.43 d/a from 2002 to 2021 and significantly decreased on the eastern and western slopes of the Greater Khingan Mountains. Meanwhile, the degree of spatial fluctuation of SFDs increased gradually with a decreasing continuity of permafrost. Snow cover and air temperature were the two most important factors influencing SFD variability in the NCPZ, accounting for 83.9% and 74.8% of the spatial variation, respectively, and SFDs increased gradually with increasing snow cover and decreasing air temperature. The strongest explanatory power of SFD spatial variability was found to be the combination of air temperature and precipitation, which had a coefficient of 94.2%. Moreover, the combination of any two environmental factors increased this power. The findings of this study can be used to design ecological environmental conservation and engineer construction policies in high-latitude permafrost zones with forest cover.

Suggested Citation

  • Dongyu Yang & Yang Xiao & Miao Li & Haoran Man & Dongliang Luo & Shuying Zang & Luhe Wan, 2024. "Quantitative Changes in the Surface Frozen Days and Potential Driving Factors in Northern Northeastern China," Land, MDPI, vol. 13(3), pages 1-22, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:273-:d:1343183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea H. Lloyd & Kenji Yoshikawa & Christopher L. Fastie & Larry Hinzman & Matthew Fraver, 2003. "Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 14(2), pages 93-101, April.
    2. Dongyu Yang & Daqing Zhan & Miao Li & Shuying Zang, 2023. "Factors Influencing the Spatiotemporal Changes of Permafrost in Northeast China from 1982 to 2020," Land, MDPI, vol. 12(2), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinting Guo & Yuanman Hu & Zaiping Xiong & Xiaolu Yan & Chunlin Li & Rencang Bu, 2017. "Variations in Growing-Season NDVI and Its Response to Permafrost Degradation in Northeast China," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    2. Julia Bosiö & Margareta Johansson & Terry Callaghan & Bernt Johansen & Torben Christensen, 2012. "Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment," Climatic Change, Springer, vol. 115(2), pages 379-398, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:273-:d:1343183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.