IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i2p261-272.html
   My bibliography  Save this article

Manipulating snow cover in an alpine bog: effects on ecosystem respiration and nutrient content in soil and microbes

Author

Listed:
  • L. Bombonato
  • R. Gerdol

Abstract

Snow amount is expected to decline in the Northern hemisphere as an effect of climate warming. However, snow amount in alpine regions will probably undergo stronger interannual fluctuations than elsewhere. We set up a short-term (1 year) experiment in which we manipulated snow cover in an alpine bog, with the following protocol: snow removal at the end of winter; snow removal in spring; snow addition in spring; removal of all aboveground plant tissues with no snow manipulation; no manipulation at all. We measured, at different dates from late spring to early autumn: ecosystem respiration (ER), and concentrations of carbon (C), nitrogen (N) and phosphorus (P) in the soil and in microbes. We hypothesized that longer duration of snow cover will lead to: i) higher ER rates associated with increased microbial biomass; and ii) decreased soil nutrient availability. Contrary to our first hypothesis, ER and microbial C content were unaffected by the snow cover manipulations, probably because ER was decoupled from microbial biomass especially in summer, when CO 2 efflux was dominated by autotrophic respiration. Our second hypothesis also was partially contradicted because nutrient content in the soil and in plants did not vary in relation to snow cover. However, we observed unexpected effects of snow cover manipulations on the N : P ratio in the microbial biomass, which declined after increasing snow cover. This probably depended on stimulation of microbial activity, which enhanced absorption of P, rather than N, by microbes. This may eventually reduce P availability for plant uptake. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • L. Bombonato & R. Gerdol, 2012. "Manipulating snow cover in an alpine bog: effects on ecosystem respiration and nutrient content in soil and microbes," Climatic Change, Springer, vol. 114(2), pages 261-272, September.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:2:p:261-272
    DOI: 10.1007/s10584-012-0405-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0405-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0405-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ellen Dorrepaal & Sylvia Toet & Richard S. P. van Logtestijn & Elferra Swart & Martine J. van de Weg & Terry V. Callaghan & Rien Aerts, 2009. "Carbon respiration from subsurface peat accelerated by climate warming in the subarctic," Nature, Nature, vol. 460(7255), pages 616-619, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Radosz & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "The Soil Respiration of Coal Mine Heaps’ Novel Ecosystems in Relation to Biomass and Biotic Parameters," Energies, MDPI, vol. 16(20), pages 1-24, October.
    2. Na Guo & Shijie Lv & Guangyi Lv & Xuebao Xu & Hongyun Yao & Zhihui Yu & Xiao Qiu & Zhanyi Wang & Chengjie Wang, 2022. "Effects of Warming and Precipitation on Soil CO 2 Flux and Its Stable Carbon Isotope Composition in the Temperate Desert Steppe," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    3. Julia Bosiö & Margareta Johansson & Terry Callaghan & Bernt Johansen & Torben Christensen, 2012. "Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment," Climatic Change, Springer, vol. 115(2), pages 379-398, November.
    4. Gong, Jinnan & Kellomäki, Seppo & Wang, Kaiyun & Zhang, Chao & Shurpali, Narasinha & Martikainen, Pertti J., 2013. "Modeling CO2 and CH4 flux changes in pristine peatlands of Finland under changing climate conditions," Ecological Modelling, Elsevier, vol. 263(C), pages 64-80.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:2:p:261-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.