IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v32y2024i2d10.1007_s10100-023-00882-0.html
   My bibliography  Save this article

Multi-day fair collaboration in demand-responsive transportation

Author

Listed:
  • E. Angelelli

    (University of Brescia)

  • V. Morandi

    (University of Brescia)

  • M. G. Speranza

    (University of Brescia)

Abstract

In this paper, we consider the case of companies that offer a demand-responsive transportation service, such as a shared-taxi service, and are engaged in a horizontal collaboration initiative. The goal of the coalition is to optimize the transportation operations in such a way that no company is penalized, in terms of customers served and/or working time. We present an optimization model for a multi-day planning horizon that includes constraints aimed at guaranteeing a level of fairness to all companies that can be controlled over the planning horizon and day-by-day, if beneficial. An adaptive large neighborhood search heuristic is then presented for its solution. The computational experiments show that, although the model constraints the optimization space, it still guarantees substantial savings. Moreover, they show that the model is flexible and can guarantee the sustainability in the long term of the collaboration initiative.

Suggested Citation

  • E. Angelelli & V. Morandi & M. G. Speranza, 2024. "Multi-day fair collaboration in demand-responsive transportation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 209-239, June.
  • Handle: RePEc:spr:cejnor:v:32:y:2024:i:2:d:10.1007_s10100-023-00882-0
    DOI: 10.1007/s10100-023-00882-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-023-00882-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-023-00882-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    2. Cruijssen, Frans & Cools, Martine & Dullaert, Wout, 2007. "Horizontal cooperation in logistics: Opportunities and impediments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(2), pages 129-142, March.
    3. Cruijssen, Frans & Cools, Martine & Dullaert, W., 2007. "Horizontal cooperation in logistics: opportunities and impediments," Other publications TiSEM ab29fad8-1faf-422b-826e-0, Tilburg University, School of Economics and Management.
    4. Gansterer, Margaretha & Hartl, Richard F., 2018. "Collaborative vehicle routing: A survey," European Journal of Operational Research, Elsevier, vol. 268(1), pages 1-12.
    5. Margaretha Gansterer & Richard F. Hartl, 2021. "The Prisoners’ Dilemma in collaborative carriers’ request selection," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 73-87, March.
    6. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    7. Jean-François Cordeau, 2006. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem," Operations Research, INFORMS, vol. 54(3), pages 573-586, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herbert Dawid & Karl F. Doerner & Gustav Feichtinger & Margaretha Gansterer & Peter M. Kort & Andrea Seidl, 2024. "Advances in applied optimal control and combinatorial optimization: special isssue in honor of Richard F. Hartl," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 177-182, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molenbruch, Yves & Braekers, Kris & Caris, An, 2017. "Benefits of horizontal cooperation in dial-a-ride services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 97-119.
    2. Oana Dinu & Eugen Rosca & Stefan Burciu & Cristina Oprea & Anamaria Ilie & Armand Serban Stere & Florin Rusca, 2024. "Integrative Framework for Platform-Based Business Models to Drive Climate Neutrality in Logistics," Sustainability, MDPI, vol. 16(4), pages 1-26, February.
    3. Bombelli, Alessandro & Fazi, Stefano, 2022. "The ground handler dock capacitated pickup and delivery problem with time windows: A collaborative framework for air cargo operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Scherr, Yannick Oskar & Gansterer, Margaretha & Hartl, Richard F., 2024. "Request acceptance with overbooking in dynamic and collaborative vehicle routing," European Journal of Operational Research, Elsevier, vol. 314(2), pages 612-629.
    5. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2023. "The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    7. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2022. "Reprint of: The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 250(C).
    8. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    9. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    10. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Zhang, Ruijuan & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A cooperative vehicle routing problem with delivery options for simultaneous pickup and delivery services in rural areas," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    13. Grigoriev, Alexander & Jung, Verena & Peeters - Rutten, Marianne & Vredeveld, Tjark, 2017. "On the Acceptance of Gain Sharing Methods in Supply Chain Collaboration," Research Memorandum 024, Maastricht University, Graduate School of Business and Economics (GSBE).
    14. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    15. Lotte Verdonck & Katrien Ramaekers & Benoît Depaire & An Caris & Gerrit K. Janssens, 2019. "Analysing the Effect of Partner Characteristics on the Performance of Horizontal Carrier Collaborations," Networks and Spatial Economics, Springer, vol. 19(2), pages 583-609, June.
    16. Arslan, Okan & Archetti, Claudia & Jabali, Ola & Laporte, Gilbert & Grazia Speranza, Maria, 2020. "Minimum cost network design in strategic alliances," Omega, Elsevier, vol. 96(C).
    17. Belma Turan & Vera Hemmelmayr & Allan Larsen & Jakob Puchinger, 2024. "Transition towards sustainable mobility: the role of transport optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 435-456, June.
    18. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    19. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    20. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:32:y:2024:i:2:d:10.1007_s10100-023-00882-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.