IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v32y2024i1d10.1007_s10100-023-00858-0.html
   My bibliography  Save this article

A hybrid estimation of distribution algorithm for the offline 2D variable-sized bin packing problem

Author

Listed:
  • Istvan Borgulya

    (University of Pecs)

Abstract

In this paper we present an evolutionary heuristic for the offline two-dimensional variable-sized bin packing problem. In this problem we have to pack a set of rectangles into two-dimensional variable-sized rectangular bins. The bins are divided into types, and the bins in different types have different sizes and possibly different weights (costs). There are (sufficiently) many bins from each type, and any rectangle fits into at least one bin-type. The goal is to pack the rectangles into the bins without overlap, parallel to the sides, so that the total area of the used bins (or total cost) is minimized. Our algorithm is a hybrid heuristic. It uses two different techniques to generate the descendants: either estimation of distribution algorithm and sampling the resulting probability model, or applying the usual operators of evolutionary algorithms (selection, mutation). To pack the rectangles into the bins the algorithm uses the strategy of randomly choosing one of two placement heuristics, that pack always only one group (one to three) of rectangles. It improves the quality of the solutions with three local search procedures. The algorithm has been tested on benchmark instances from the literature and has been compared with other heuristics and metaheuristics. Our algorithm outperformed the previously published results.

Suggested Citation

  • Istvan Borgulya, 2024. "A hybrid estimation of distribution algorithm for the offline 2D variable-sized bin packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 45-65, March.
  • Handle: RePEc:spr:cejnor:v:32:y:2024:i:1:d:10.1007_s10100-023-00858-0
    DOI: 10.1007/s10100-023-00858-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-023-00858-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-023-00858-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    2. Belov, G. & Scheithauer, G., 2002. "A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths," European Journal of Operational Research, Elsevier, vol. 141(2), pages 274-294, September.
    3. P. Y. Wang, 1983. "Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 31(3), pages 573-586, June.
    4. Mauro Baldi & Teodor Crainic & Guido Perboli & Roberto Tadei, 2014. "Branch-and-price and beam search algorithms for the Variable Cost and Size Bin Packing Problem with optional items," Annals of Operations Research, Springer, vol. 222(1), pages 125-141, November.
    5. E. K. Burke & G. Kendall & G. Whitwell, 2004. "A New Placement Heuristic for the Orthogonal Stock-Cutting Problem," Operations Research, INFORMS, vol. 52(4), pages 655-671, August.
    6. Kang, Jangha & Park, Sungsoo, 2003. "Algorithms for the variable sized bin packing problem," European Journal of Operational Research, Elsevier, vol. 147(2), pages 365-372, June.
    7. Teodor Gabriel Crainic & Guido Perboli & Roberto Tadei, 2008. "Extreme Point-Based Heuristics for Three-Dimensional Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 368-384, August.
    8. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    9. István Borgulya, 2019. "An EDA for the 2D knapsack problem with guillotine constraint," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 329-356, June.
    10. Alves, Claudio & Valerio de Carvalho, J.M., 2007. "Accelerating column generation for variable sized bin-packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1333-1352, December.
    11. Istvan Borgulya, 2021. "A hybrid evolutionary algorithm for the offline Bin Packing Problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 425-445, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Péter Biró & Sándor Bozóki & Tamás Király & Alexandru Kristály, 2024. "Optimization methods and algorithms," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 1-9, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Zhang & Shixin Liu & Ruiyou Zhang & Shujin Qin, 2021. "Column generation algorithms for mother plate design in steel plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 127-153, March.
    2. Sam D. Allen & Edmund K. Burke, 2012. "Data Structures for Higher-Dimensional Rectilinear Packing," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 457-470, August.
    3. Paquay, Célia & Limbourg, Sabine & Schyns, Michaël, 2018. "A tailored two-phase constructive heuristic for the three-dimensional Multiple Bin Size Bin Packing Problem with transportation constraints," European Journal of Operational Research, Elsevier, vol. 267(1), pages 52-64.
    4. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    5. Farahani, Amirreza & Genga, Laura & Schrotenboer, Albert H. & Dijkman, Remco, 2024. "Capacity planning in logistics corridors: Deep reinforcement learning for the dynamic stochastic temporal bin packing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    6. Wu, Yong & Li, Wenkai & Goh, Mark & de Souza, Robert, 2010. "Three-dimensional bin packing problem with variable bin height," European Journal of Operational Research, Elsevier, vol. 202(2), pages 347-355, April.
    7. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2013. "A goal-driven approach to the 2D bin packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 224(1), pages 110-121.
    8. Mauro Baldi & Teodor Crainic & Guido Perboli & Roberto Tadei, 2014. "Branch-and-price and beam search algorithms for the Variable Cost and Size Bin Packing Problem with optional items," Annals of Operations Research, Springer, vol. 222(1), pages 125-141, November.
    9. Andrea Bettinelli & Alberto Ceselli & Giovanni Righini, 2010. "A branch-and-price algorithm for the variable size bin packing problem with minimum filling constraint," Annals of Operations Research, Springer, vol. 179(1), pages 221-241, September.
    10. Toffolo, Túlio A.M. & Esprit, Eline & Wauters, Tony & Vanden Berghe, Greet, 2017. "A two-dimensional heuristic decomposition approach to a three-dimensional multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 526-538.
    11. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    12. Sándor P. Fekete & Jörg Schepers, 2004. "A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 353-368, May.
    13. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    14. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    15. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    16. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    17. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    18. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    19. Baldi, Mauro Maria & Manerba, Daniele & Perboli, Guido & Tadei, Roberto, 2019. "A Generalized Bin Packing Problem for parcel delivery in last-mile logistics," European Journal of Operational Research, Elsevier, vol. 274(3), pages 990-999.
    20. Hu, Qian & Wei, Lijun & Lim, Andrew, 2018. "The two-dimensional vector packing problem with general costs," Omega, Elsevier, vol. 74(C), pages 59-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:32:y:2024:i:1:d:10.1007_s10100-023-00858-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.