IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v29y2021i3d10.1007_s10100-020-00722-5.html
   My bibliography  Save this article

Efficient incrementing heuristics for generalized p-location problems

Author

Listed:
  • Jaroslav Janáček

    (University of Žilina)

  • Marek Kvet

    (University of Žilina)

Abstract

This paper studies effective solving techniques for large p-location problems, in which generalized disutility is applied to incorporate stochastic behavior of real service system. The concept of generalized disutility follows the idea that the nearest located service center may be temporarily unavailable at the moment of currently arisen demand and the demand is serviced from a more distant service center with given probability. The more complex approach to the real p-location asks for enormous computational time of exact solving tools and thus evokes the question whether the faster heuristics can compete with the exact approaches in accuracy of results obtained. To answer the question, two heuristics were proposed for the studied problem. The first of them is a common swap local search with the best-admissible strategy and the second is based on the path-relinking method. The both heuristics make use of so called uniformly deployed sets used for preliminary mapping of the feasible solutions to accelerate the performance of the heuristics. As uniformly deployed set construction can be done in two modes, the paper is also focused on finding the most effective combination of the mode and heuristic. A real case study was performed with seven road networks with number of nodes varying from 250 to 660. In addition, ten different families of uniformly deployed sets were generated for each network and mode. The results of the case study confirm that the suggested approaches are able to produce the solutions of the same quality as the exact approaches. Furthermore, the study indicates drawbacks, which can be met in connection with usage of specific combinations of heuristic and the mode of uniformly deployed set construction.

Suggested Citation

  • Jaroslav Janáček & Marek Kvet, 2021. "Efficient incrementing heuristics for generalized p-location problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 989-1000, September.
  • Handle: RePEc:spr:cejnor:v:29:y:2021:i:3:d:10.1007_s10100-020-00722-5
    DOI: 10.1007/s10100-020-00722-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-020-00722-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-020-00722-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2011. "The Price of Fairness," Operations Research, INFORMS, vol. 59(1), pages 17-31, February.
    2. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    3. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    4. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    5. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    6. Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrej Kastrin & Janez Povh & Lidija Zadnik Stirn & Janez Žerovnik, 2021. "Methodologies and applications for resilient global development from the aspect of SDI-SOR special issues of CJOR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 773-790, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    2. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    3. Jaroslav Janáček & Marek Kvet, 2017. "Semi-fair design of emergency service system with failing centers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 665-677, September.
    4. Jaroslav Janáček & Marek Kvet & Peter Czimmermann, 2023. "Kit of Uniformly Deployed Sets for p -Location Problems," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    5. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    6. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    7. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.
    8. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    9. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    10. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
    11. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    12. G Erdoğan & E Erkut & A Ingolfsson & G Laporte, 2010. "Scheduling ambulance crews for maximum coverage," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 543-550, April.
    13. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    14. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    15. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    16. Ľuboš Buzna & Peter Czimmermann, 2021. "On the Modelling of Emergency Ambulance Trips: The Case of the Žilina Region in Slovakia," Mathematics, MDPI, vol. 9(17), pages 1-30, September.
    17. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    18. Kenneth C. Chong & Shane G. Henderson & Mark E. Lewis, 2016. "The Vehicle Mix Decision in Emergency Medical Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 347-360, July.
    19. Soovin Yoon & Laura A. Albert & Veronica M. White, 2021. "A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances," Transportation Science, INFORMS, vol. 55(2), pages 275-296, March.
    20. Shayesta Wajid & N. Nezamuddin, 2023. "Optimizing emergency services for road safety using a decomposition method: a case study of Delhi," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 155-173, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:29:y:2021:i:3:d:10.1007_s10100-020-00722-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.