IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v17y2023i2d10.1007_s11943-023-00321-1.html
   My bibliography  Save this article

Die Berücksichtigung von außergesetzlichen Merkmalen bei der Mietspiegelerstellung – Kausalität versus Vorhersage
[The consideration of extra-legal features when creating the rent index—causality versus prediction]

Author

Listed:
  • Göran Kauermann

    (Ludwig-Maximilians-Universität München)

  • Michael Windmann

    (Ludwig-Maximilians-Universität München)

Abstract

Zusammenfassung Das neue Mietspiegelgesetz erlaubt die Berücksichtigung von sogenannten außergesetzlichen Merkmalen wie Mietdauer und Vermietertyp bei der Erstellung von Mietspiegeln. Diese außergesetzlichen Merkmale dürfen in zukünftigen Mietspiegeln bei deren Erstellung und Modellwahl Einfluss finden, nicht aber im konkreten Mietspiegelmodell. Diese gesetzliche Vorgabe lässt viel Spielraum, der in diesem Beitrag aus statistischer Sicht beleuchtet wird. Anhand von konkreten Daten werden die Konsequenzen quantifiziert und aufgezeigt.

Suggested Citation

  • Göran Kauermann & Michael Windmann, 2023. "Die Berücksichtigung von außergesetzlichen Merkmalen bei der Mietspiegelerstellung – Kausalität versus Vorhersage [The consideration of extra-legal features when creating the rent index—causality v," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(2), pages 145-160, June.
  • Handle: RePEc:spr:astaws:v:17:y:2023:i:2:d:10.1007_s11943-023-00321-1
    DOI: 10.1007/s11943-023-00321-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11943-023-00321-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11943-023-00321-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Schmid & Markus Zwick, 2023. "Editorial," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(2), pages 109-111, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Tianyu & Chand, Satish & Sharpe, Keiran, 2018. "Effect of aging on housing prices: evidence from a panel data," MPRA Paper 94418, University Library of Munich, Germany, revised 01 Mar 2019.
    2. Haiqing Hu & Pandu R. Tadikamalla, 2020. "When to launch a sales promotion for online fashion products? An empirical study," Electronic Commerce Research, Springer, vol. 20(4), pages 737-756, December.
    3. Stefano Cabras & J. James Reade & J.D. Tena, 2018. "Social Pressure or Rational Reactions to Incentives? A Historical Analysis of Reasons for Referee Bias in the Spanish Football," Working Papers 20189, University of Liverpool, Department of Economics.
    4. Anja M. Hahn & Konstantin A. Kholodilin & Sofie R. Waltl & Marco Fongoni, 2024. "Forward to the Past: Short-Term Effects of the Rent Freeze in Berlin," Management Science, INFORMS, vol. 70(3), pages 1901-1923, March.
    5. Peter Pütz & Thomas Kneib, 2018. "A penalized spline estimator for fixed effects panel data models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 145-166, April.
    6. Ursula Laa & Dianne Cook, 2020. "Using tours to visually investigate properties of new projection pursuit indexes with application to problems in physics," Computational Statistics, Springer, vol. 35(3), pages 1171-1205, September.
    7. Hervé Cardot & Antonio Musolesi, 2019. "Modeling temporal treatment effects with zero inflated semi-parametric regression models: the case of local development policies in France," SEEDS Working Papers 0219, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jan 2019.
    8. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
    9. Alexander P. Keil & Katie M. O’Brien, 2024. "Considerations and Targeted Approaches to Identifying Bad Actors in Exposure Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 459-481, July.
    10. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2021. "Quantifying longevity gaps using micro‐level lifetime data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 548-570, April.
    11. Maroof Ahmad Khan & Sumit Kumar Das, 2024. "Revisiting Factors Influencing Under-Five Mortality in India: The Application of a Generalised Additive Cox Proportional Hazards Model," IJERPH, MDPI, vol. 21(10), pages 1-13, September.
    12. Antonio Musolesi & Davide Golinelli & Massimiliano Mazzanti, 2025. "Modelling green knowledge production and environmental policies with semiparametric panel data regression models," Empirical Economics, Springer, vol. 68(1), pages 327-352, January.
    13. Guido España & Yutong Yao & Kathryn B Anderson & Meagan C Fitzpatrick & David L Smith & Amy C Morrison & Annelies Wilder-Smith & Thomas W Scott & T Alex Perkins, 2019. "Model-based assessment of public health impact and cost-effectiveness of dengue vaccination following screening for prior exposure," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(7), pages 1-21, July.
    14. Allen, Jeff & Farber, Steven, 2020. "Planning transport for social inclusion: An accessibility-activity participation approach," SocArXiv ap7wh, Center for Open Science.
    15. Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    16. Cheol-Joo Cho & Kwangil Cheon & Wanmo Kang, 2024. "Assessment of the Spatial Variation of the Economic Benefits of Urban Green Spaces in a Highly Urbanized Area," Land, MDPI, vol. 13(5), pages 1-16, April.
    17. Petti, Danilo & Eletti, Alessia & Marra, Giampiero & Radice, Rosalba, 2022. "Copula link-based additive models for bivariate time-to-event outcomes with general censoring scheme," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    18. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    19. Kunegel-Lion, Mélodie & Neilson, Eric W. & Mansuy, Nicolas & Goodsman, Devin W., 2022. "Habitat quality does not predict animal population abundance on frequently disturbed landscapes," Ecological Modelling, Elsevier, vol. 469(C).
    20. Chenyin Gao & Katherine Jenny Thompson & Jae Kwang Kim & Shu Yang, 2022. "Nearest neighbour ratio imputation with incomplete multinomial outcome in survey sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1903-1930, October.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:17:y:2023:i:2:d:10.1007_s11943-023-00321-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.