IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v22y2024i2d10.1007_s10288-023-00542-8.html
   My bibliography  Save this article

Customer joining strategies in Markovian queues with B-limited service rule and multiple vacations

Author

Listed:
  • Wei Sun

    (Yanshan University)

  • Xumeng Xie

    (Yanshan University)

  • Zhiyuan Zhang

    (Yanshan University)

  • Shiyong Li

    (Yanshan University)

Abstract

This paper studies customer joining strategies in some single-server Markovian queues with batch limited service rule and multiple vacations. The server begins to take a vacation time as soon as a batch of $$\Phi $$ Φ customers are served continuously. If the server finds that there are fewer than $$\Phi $$ Φ customers present in the system at the completion instant of a vacation time, then he takes another until there are no less than $$\Phi $$ Φ customers waiting after his returning. We consider both the fully observable case and the fully unobservable case, and get customer joining strategy in equilibrium in each case as well as their socially optimal joining strategy in the fully unobservable case. For each case, we find that there may be multiple equilibria but not all of them are stable, and stable equilibria do not always exist. For the fully observable queues, the stable equilibrium thresholds in a vacation period and in a service period are independent of $$\Phi $$ Φ . For the fully unobservable queues, customers’ equilibrium behavior is inconsistent with their socially optimal behavior, and there always exists an optimal $$\Phi $$ Φ to maximize social welfare. So the system manager can achieve social optimization by controlling arrivals and the batch size $$\Phi $$ Φ .

Suggested Citation

  • Wei Sun & Xumeng Xie & Zhiyuan Zhang & Shiyong Li, 2024. "Customer joining strategies in Markovian queues with B-limited service rule and multiple vacations," 4OR, Springer, vol. 22(2), pages 211-233, June.
  • Handle: RePEc:spr:aqjoor:v:22:y:2024:i:2:d:10.1007_s10288-023-00542-8
    DOI: 10.1007/s10288-023-00542-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-023-00542-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-023-00542-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nimrod Dvir & Refael Hassin & Uri Yechiali, 2020. "Strategic behaviour in a tandem queue with alternating server," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 205-244, December.
    2. Yoav Kerner & Ophir Shmuel-Bittner, 2020. "Strategic behavior and optimization in a hybrid M/M/1 queue with retrials," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 285-302, December.
    3. Athanasia Manou & Antonis Economou & Fikri Karaesmen, 2014. "Strategic Customers in a Transportation Station: When Is It Optimal to Wait?," Operations Research, INFORMS, vol. 62(4), pages 910-925, August.
    4. Dimitrakopoulos, Yiannis & Economou, Antonis & Leonardos, Stefanos, 2021. "Strategic customer behavior in a queueing system with alternating information structure," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1024-1040.
    5. Athanasia Manou & Pelin G. Canbolat & Fikri Karaesmen, 2017. "Pricing in a Transportation Station with Strategic Customers," Production and Operations Management, Production and Operations Management Society, vol. 26(9), pages 1632-1645, September.
    6. Benioudakis, Myron & Burnetas, Apostolos & Ioannou, George, 2021. "Lead-time quotations in unobservable make-to-order systems with strategic customers: Risk aversion, load control and profit maximization," European Journal of Operational Research, Elsevier, vol. 289(1), pages 165-176.
    7. Bu, Qihui & Sun, Yun & Chai, Xudong & Liu, Liwei, 2020. "Strategic behavior and social optimization in a clearing queueing system with N-policy and stochastic restarting scheme," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    8. S. Srivatsa Srinivas & Rahul R. Marathe, 2020. "Equilibrium in a finite capacity M/M/1 queue with unknown service rates consisting of strategic and non-strategic customers," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 329-356, December.
    9. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, June.
    10. Jinting Wang & Shiliang Cui & Zhongbin Wang, 2019. "Equilibrium Strategies in M/M/1 Priority Queues with Balking," Production and Operations Management, Production and Operations Management Society, vol. 28(1), pages 43-62, January.
    11. Wang, Jinting & Zhang, Xuelu & Huang, Ping, 2017. "Strategic behavior and social optimization in a constant retrial queue with the N-policy," European Journal of Operational Research, Elsevier, vol. 256(3), pages 841-849.
    12. Guo, Pengfei & Hassin, Refael, 2012. "Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers," European Journal of Operational Research, Elsevier, vol. 222(2), pages 278-286.
    13. Wei Sun & Shiyong Li, 2014. "Equilibrium and optimal behavior of customers in Markovian queues with multiple working vacations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 694-715, July.
    14. Pengfei Guo & Refael Hassin, 2011. "Strategic Behavior and Social Optimization in Markovian Vacation Queues," Operations Research, INFORMS, vol. 59(4), pages 986-997, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
    2. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.
    3. Abdoun Sylia & Taleb Samira, 2024. "Strategic Joining in an Unobservable Markovian Queue with Differentiated Vacations," SN Operations Research Forum, Springer, vol. 5(3), pages 1-27, September.
    4. Qingqing Ma & Yiqiang Q. Zhao & Weiqi Liu & Jihong Li, 2019. "Customer Strategic Joining Behavior in Markovian Queues with Working Vacations and Vacation Interruptions Under Bernoulli Schedule," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-26, February.
    5. Yiannis Dimitrakopoulos, 2023. "Equilibrium Behavior in Tandem Markovian Queues with Heterogeneous Delay-Sensitive Customers," SN Operations Research Forum, Springer, vol. 4(4), pages 1-29, December.
    6. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    7. Opher Baron & Antonis Economou & Athanasia Manou, 2022. "Increasing social welfare with delays: Strategic customers in the M/G/1 orbit queue," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2907-2924, July.
    8. Dimitrios Logothetis & Athanasia Manou & Antonis Economou, 2023. "The impact of reneging on a fluid on-off queue with strategic customers," Annals of Operations Research, Springer, vol. 331(2), pages 629-647, December.
    9. Xianyue Shi & Liwei Liu, 2023. "Equilibrium Joining Strategies in the Retrial Queue with Two Classes of Customers and Delayed Vacations," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-27, June.
    10. Economou, Antonis & Logothetis, Dimitrios & Manou, Athanasia, 2022. "The value of reneging for strategic customers in queueing systems with server vacations/failures," European Journal of Operational Research, Elsevier, vol. 299(3), pages 960-976.
    11. Jie Liu & Jinting Wang, 2017. "Strategic joining rules in a single server Markovian queue with Bernoulli vacation," Operational Research, Springer, vol. 17(2), pages 413-434, July.
    12. Gopinath Panda & Veena Goswami & Abhijit Datta Banik, 2016. "Equilibrium and Socially Optimal Balking Strategies in Markovian Queues with Vacations and Sequential Abandonment," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-34, October.
    13. Bountali, Olga & Economou, Antonis, 2017. "Equilibrium joining strategies in batch service queueing systems," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1142-1151.
    14. Zhen Wang & Liwei Liu & Yiqiang Q. Zhao, 2022. "Equilibrium customer and socially optimal balking strategies in a constant retrial queue with multiple vacations and N-policy," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 870-908, May.
    15. Wei Sun & Shiyong Li, 2014. "Equilibrium and optimal behavior of customers in Markovian queues with multiple working vacations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 694-715, July.
    16. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.
    17. Wang, Jinting & Zhang, Feng, 2013. "Strategic joining in M/M/1 retrial queues," European Journal of Operational Research, Elsevier, vol. 230(1), pages 76-87.
    18. Bu, Qihui & Sun, Yun & Chai, Xudong & Liu, Liwei, 2020. "Strategic behavior and social optimization in a clearing queueing system with N-policy and stochastic restarting scheme," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    19. Gabi Hanukov & Michael Hassoun & Oren Musicant, 2021. "On the Benefits of Providing Timely Information in Ticket Queues with Balking and Calling Times," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    20. Oz, Binyamin & Adan, Ivo & Haviv, Moshe, 2019. "The Mn/Gn/1 queue with vacations and exhaustive service," European Journal of Operational Research, Elsevier, vol. 277(3), pages 945-952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:22:y:2024:i:2:d:10.1007_s10288-023-00542-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.