IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i4d10.1007_s40745-024-00562-z.html
   My bibliography  Save this article

Transmuted Shifted Lindley Distribution: Characterizations, Classical and Bayesian Estimation with Applications

Author

Listed:
  • A. Chakraborty

    (Visva-Bharati)

  • S. Rana

    (Visva-Bharati)

  • S. I. Maiti

    (Visva-Bharati)

Abstract

In this article, we propose the quadratic rank transmutation map approach on shifted Lindley distribution to improve the existing distribution further. An additional skewness parameter $$\lambda $$ λ is incorporated to transmute the distribution. The distribution, hence introduced, is called the Transmuted Shifted Lindley distribution. We provide a comprehensive description of this distribution’s statistical properties and its reliability behavior. The heat maps on the associated parameters are presented. In the estimation section, both maximum likelihood and Bayesian estimation of parameters are discussed. A detailed simulation study is performed. Finally, a real data application illustrates the performance of fitting to the proposed distribution.

Suggested Citation

  • A. Chakraborty & S. Rana & S. I. Maiti, 2025. "Transmuted Shifted Lindley Distribution: Characterizations, Classical and Bayesian Estimation with Applications," Annals of Data Science, Springer, vol. 12(4), pages 1237-1264, August.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:4:d:10.1007_s40745-024-00562-z
    DOI: 10.1007/s40745-024-00562-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00562-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00562-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Majdah M. Badr & Ibrahim Elbatal & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2020. "The Transmuted Odd Fréchet-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    3. Daniele Cristina Tita Granzotto & Francisco Louzada, 2015. "The Transmuted Log-Logistic Distribution: Modeling, Inference, and an Application to a Polled Tabapua Race Time up to First Calving Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(16), pages 3387-3402, August.
    4. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    5. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    6. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    7. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro L. Ramos & Francisco Louzada, 2019. "A Distribution for Instantaneous Failures," Stats, MDPI, vol. 2(2), pages 1-12, May.
    2. Afaq Ahmad & A. A. Bhat & S. P. Ahmad & Raheela Jan, 2025. "The Modified Lindley Distribution Through Convex Combination with Applications in Engineering," Annals of Data Science, Springer, vol. 12(5), pages 1463-1478, October.
    3. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    4. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 597-620, December.
    5. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    6. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    7. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    8. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    9. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    10. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    11. Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
    12. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    13. Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.
    14. Kantar, Yeliz Mert & Usta, Ilhan & Arik, Ibrahim & Yenilmez, Ismail, 2018. "Wind speed analysis using the Extended Generalized Lindley Distribution," Renewable Energy, Elsevier, vol. 118(C), pages 1024-1030.
    15. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    16. E.I., Abdul Sathar & K.V., Viswakala, 2019. "Non-parametric estimation of Kullback–Leibler discrimination information based on censored data," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    17. Alaaeldin Mohamed Dyab & Hiba Zeyada Muhammed, 2025. "Correction to: Bayesian estimation of the number of species from Poisson–Lindley stochastic abundance model using non-informative priors," Computational Statistics, Springer, vol. 40(5), pages 2471-2489, June.
    18. Rama Shanker & Kamlesh Kumar Shukla, 2017. "Zero-Truncated Poisson-Garima Distribution and its Applications," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(1), pages 14-19, September.
    19. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    20. Ghitany, M.E. & Alqallaf, F. & Al-Mutairi, D.K. & Husain, H.A., 2011. "A two-parameter weighted Lindley distribution and its applications to survival data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(6), pages 1190-1201.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:4:d:10.1007_s40745-024-00562-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.