Analysis of the HIV/AIDS Data Using Joint Modeling of Longitudinal (k,l)-Inflated Count and Time to Event Data in Clinical Trials
Author
Abstract
Suggested Citation
DOI: 10.1007/s40745-024-00532-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654, June.
- T. Baghfalaki & M. Ganjali & D. Berridge, 2014. "Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1934-1955, September.
- Lang Wu & Wei Liu & Grace Y. Yi & Yangxin Huang, 2012. "Analysis of Longitudinal and Survival Data: Joint Modeling, Inference Methods, and Issues," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-17, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Taban Baghfalaki & Mojtaba Ganjali & Geert Verbeke, 2017. "A shared parameter model of longitudinal measurements and survival time with heterogeneous random-effects distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2813-2836, November.
- Atanu B & Gajendra V & Jesna J & Ramesh V, 2017. "Multiple Imputations for Determining an Optimum Biological Dose of a Metronomic Chemotherapy," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(5), pages 129-140, October.
- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
- Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
- Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
- Karl Andrew T., 2012. "The Sensitivity of College Football Rankings to Several Modeling Choices," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-44, October.
- Rui Martins, 2022. "A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 41-61, March.
- Andrew T. Karl & Yan Yang & Sharon L. Lohr, 2013. "A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 577-603, December.
- Yihao Li & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Yanjun Chen & Kamyar Kalantar‐Zadeh & Damla Şentürk, 2020. "A multilevel mixed effects varying coefficient model with multilevel predictors and random effects for modeling hospitalization risk in patients on dialysis," Biometrics, The International Biometric Society, vol. 76(3), pages 924-938, September.
- Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- repec:jss:jstsof:35:i09 is not listed on IDEAS
- Zhang, Cuihong & Ning, Jing & Cai, Jianwen & Squires, James E. & Belle, Steven H. & Li, Ruosha, 2024. "Dynamic risk score modeling for multiple longitudinal risk factors and survival," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
- Maaya, Leonard & Meulders, Michel & Vandebroek, Martina, 2021. "Joint analysis of preferences and drop out data in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 41(C).
- Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
- Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
- Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
- Melkamu Molla Ferede & Samuel Mwalili & Getachew Dagne & Simon Karanja & Workagegnehu Hailu & Mahmoud El-Morshedy & Afrah Al-Bossly, 2022. "A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
- Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.
More about this item
Keywords
Generalized linear mixed effect model (GLMEM); Longitudinal count (LC) data; Time to event (TTE) data; Joint model; Cox (proportional hazards or PHs) model; Accelerated failure time (AFT) model; Power series distribution (PSD);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:2:d:10.1007_s40745-024-00532-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.