IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i4d10.1007_s40745-021-00352-x.html
   My bibliography  Save this article

A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images

Author

Listed:
  • Preeti Verma

    (RKDF University)

  • Sunil Patil

    (RKDF University)

Abstract

In this paper, machine learning based method for the estimation of solar radiation in earth surface is presented. To design the machine learning model, multispectral (visible and infrared) satellite images of the very high-resolution from multiple locations are considered as primary data. The satellite images in visible and infrared bands, altitude, latitude, longitude, month, day, time, solar zenith angle, solar azimuth angle, viewing zenith angle, and viewing azimuth angle are used as input to the machine learning, while the solar radiation is taken as output variable. The paper specifics the entire procedure, including data collection, pre-processing, and feature selection, as well as the selection of the best machine learning algorithm, measurements, and validation. The impact of each input feature in estimating the solar radiation is also analyzed using correlation methods. SOLCAST datasets are used for Carcassonne city in the France. The analysis of correlations provides how variables are connected or linked. The Pearson correlation, Kendall rank correlation, Spearman correlation, and Phi K correlations are used in the present study and useful correlations exist because they allow us to anticipate future behaviour by relating the relevant parameters (such as azimuth angle, cloud capacity, dew point temp, air temp, DHI, DNI, horizontal component of beam radiation (Ebh), GHI, precipitable water, relative humidity, surface pressure, wind direction, wind speed, zenith, albedo daily). From the correlation results, neural network algorithm has been adopted using most relevant parameters to validate the results. Researchers and scientists may use the method to build high-efficiency solar devices like solar power plants and photovoltaic cells.

Suggested Citation

  • Preeti Verma & Sunil Patil, 2023. "A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images," Annals of Data Science, Springer, vol. 10(4), pages 907-932, August.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:4:d:10.1007_s40745-021-00352-x
    DOI: 10.1007/s40745-021-00352-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-021-00352-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-021-00352-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    2. Deo, Ravinesh C. & Şahin, Mehmet & Adamowski, Jan F. & Mi, Jianchun, 2019. "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 235-261.
    3. Senkal, Ozan & Kuleli, Tuncay, 2009. "Estimation of solar radiation over Turkey using artificial neural network and satellite data," Applied Energy, Elsevier, vol. 86(7-8), pages 1222-1228, July.
    4. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    5. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    6. Majidi Nezhad, M. & Heydari, A. & Groppi, D. & Cumo, F. & Astiaso Garcia, D., 2020. "Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: A case study Sardinia islands," Renewable Energy, Elsevier, vol. 155(C), pages 212-224.
    7. Bou-Rabee, Mohammed & Sulaiman, Shaharin A. & Saleh, Magdy Saad & Marafi, Suhaila, 2017. "Using artificial neural networks to estimate solar radiation in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 434-438.
    8. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    9. Muzhou Hou & Tianle Zhang & Futian Weng & Mumtaz Ali & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2018. "Global Solar Radiation Prediction Using Hybrid Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 11(12), pages 1-19, December.
    10. Qingtao Zhou & Alejandro Flores & Nancy F Glenn & Reggie Walters & Bangshuai Han, 2017. "A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-19, August.
    11. Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2004. "Use of artificial neural networks for mapping of solar potential in Turkey," Applied Energy, Elsevier, vol. 77(3), pages 273-286, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
    2. Hai Tao & Isa Ebtehaj & Hossein Bonakdari & Salim Heddam & Cyril Voyant & Nadhir Al-Ansari & Ravinesh Deo & Zaher Mundher Yaseen, 2019. "Designing a New Data Intelligence Model for Global Solar Radiation Prediction: Application of Multivariate Modeling Scheme," Energies, MDPI, vol. 12(7), pages 1-24, April.
    3. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
    4. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    5. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    6. Chen, Jiang & Zhu, Weining & Yu, Qian, 2021. "Estimating half-hourly solar radiation over the Continental United States using GOES-16 data with iterative random forest," Renewable Energy, Elsevier, vol. 178(C), pages 916-929.
    7. Rijwan Khan, 2023. "Deep Learning System and It’s Automatic Testing: An Approach," Annals of Data Science, Springer, vol. 10(4), pages 1019-1033, August.
    8. Kılıç, Fatih & Yılmaz, İbrahim Halil & Kaya, Özge, 2021. "Adaptive co-optimization of artificial neural networks using evolutionary algorithm for global radiation forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 176-190.
    9. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    11. Baser, Furkan & Demirhan, Haydar, 2017. "A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation," Energy, Elsevier, vol. 123(C), pages 229-240.
    12. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    13. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    14. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    15. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    16. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    17. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    18. Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
    19. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    20. Guijo-Rubio, D. & Durán-Rosal, A.M. & Gutiérrez, P.A. & Gómez-Orellana, A.M. & Casanova-Mateo, C. & Sanz-Justo, J. & Salcedo-Sanz, S. & Hervás-Martínez, C., 2020. "Evolutionary artificial neural networks for accurate solar radiation prediction," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:4:d:10.1007_s40745-021-00352-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.