IDEAS home Printed from
   My bibliography  Save this article

Dirty spatial econometrics


  • Giuseppe Arbia

    () (Catholic University of the Sacred Heart)

  • Giuseppe Espa

    (University of Trento)

  • Diego Giuliani

    (University of Trento)


Abstract Spatial data are often contaminated with a series of imperfections that reduce their quality and can dramatically distort the inferential conclusions based on spatial econometric modeling. A “clean” ideal situation considered in standard spatial econometrics textbooks is when we fit Cliff-Ord-type models to data where the spatial units constitute the full population, there are no missing data, and there is no uncertainty on the spatial observations that are free from measurement and locational errors. Unfortunately in practical cases the reality is often very different and the datasets contain all sorts of imperfections: They are often based on a sample drawn from the whole population, some data are missing and they almost invariably contain both attribute and locational errors. This is a situation of “dirty” spatial econometric modeling. Through a series of Monte Carlo experiments, this paper considers the effects on spatial econometric model estimation and hypothesis testing of two specific sources of dirt, namely missing data and locational errors.

Suggested Citation

  • Giuseppe Arbia & Giuseppe Espa & Diego Giuliani, 2016. "Dirty spatial econometrics," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 177-189, January.
  • Handle: RePEc:spr:anresc:v:56:y:2016:i:1:d:10.1007_s00168-015-0726-5
    DOI: 10.1007/s00168-015-0726-5

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    2. Eva Deuchert & Conny Wunsch, 2014. "Evaluating nationwide health interventions: Malawi's insecticide-treated-net distribution programme," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(2), pages 523-552, February.
    3. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    4. Baltagi, Badi H. & Egger, Peter & Pfaffermayr, Michael, 2007. "Estimating models of complex FDI: Are there third-country effects?," Journal of Econometrics, Elsevier, vol. 140(1), pages 260-281, September.
    5. D A Griffith & R J Bennett & R P Haining, 1989. "Statistical Analysis of Spatial Data in the Presence of Missing Observations: A Methodological Guide and an Application to Urban Census Data," Environment and Planning A, , vol. 21(11), pages 1511-1523, November.
    6. Harry Kelejian & Ingmar Prucha, 2010. "Spatial models with spatially lagged dependent variables and incomplete data," Journal of Geographical Systems, Springer, vol. 12(3), pages 241-257, September.
    7. D A Griffith & R J Bennett & R P Haining, 1989. "Statistical analysis of spatial data in the presence of missing observations: a methodological guide and an application to urban census data," Environment and Planning A, Pion Ltd, London, vol. 21(11), pages 1511-1523, November.
    8. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    9. Alfonso Flores‐Lagunes & Kurt Erik Schnier, 2012. "Estimation of sample selection models with spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 173-204, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:anresc:v:56:y:2016:i:1:d:10.1007_s00168-015-0726-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Andrew Huffard) The email address of this maintainer does not seem to be valid anymore. Please ask Andrew Huffard to update the entry or send us the correct email address. General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.