IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v351y2025i2d10.1007_s10479-024-06140-z.html
   My bibliography  Save this article

Free disposal hull models of multicomponent technologies

Author

Listed:
  • Grammatoula Papaioannou

    (Loughborough University)

  • Victor V. Podinovski

    (Loughborough University)

Abstract

Free disposal hull (FDH) is a nonparametric model of production technology based on the single assumption of free disposability of all inputs and outputs. In this paper, we consider multicomponent production technologies in which every decision making unit (DMU) consists of several parallel component processes that can in principle operate independently of each other, provided they have sufficient resources. An example is universities viewed as DMUs, with their departments or groups of departments viewed as component processes. Each component process uses its own set of inputs and an unknown part of the shared inputs in order to produce its own set of outputs and an unknown part of the shared outputs. We allow combinations of component processes taken from different DMUs in order to construct new hypothetical DMUs, and refer to the resulting model of technology as the multicomponent FDH (MFDH) model. We further develop a larger, and mathematically nontrivial, variant of MFDH for the case in which we can specify certain bounds on the proportions in which shared inputs and outputs are allocated to component processes. We use an illustrative example in the context of universities to demonstrate the increasing discriminatory power of the new MFDH models over the standard FDH models in the multicomponent setting.

Suggested Citation

  • Grammatoula Papaioannou & Victor V. Podinovski, 2025. "Free disposal hull models of multicomponent technologies," Annals of Operations Research, Springer, vol. 351(2), pages 1559-1587, August.
  • Handle: RePEc:spr:annopr:v:351:y:2025:i:2:d:10.1007_s10479-024-06140-z
    DOI: 10.1007/s10479-024-06140-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06140-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06140-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    2. Kerstens, Kristiaan & Sadeghi, Jafar & Toloo, Mehdi & Van de Woestyne, Ignace, 2022. "Procedures for ranking technical and cost efficient units: With a focus on nonconvexity," European Journal of Operational Research, Elsevier, vol. 300(1), pages 269-281.
    3. Leleu, Herve, 2006. "A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models," European Journal of Operational Research, Elsevier, vol. 168(2), pages 340-344, January.
    4. Walheer, Barnabé, 2018. "Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs," Omega, Elsevier, vol. 75(C), pages 1-12.
    5. Silva, Maria Conceição A., 2018. "Output-specific inputs in DEA: An application to courts of justice in Portugal," Omega, Elsevier, vol. 79(C), pages 43-53.
    6. Per Agrell & Jørgen Tind, 2001. "A Dual Approach to Nonconvex Frontier Models," Journal of Productivity Analysis, Springer, vol. 16(2), pages 129-147, September.
    7. Walter Briec & Kristiaan Kerstens & Philippe Venden Eeckaut, 2004. "Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity," Journal of Economics, Springer, vol. 81(2), pages 155-192, February.
    8. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    9. Wade D. Cook & Joe Zhu, 2006. "Incorporating Multiprocess Performance Standards into the DEA Framework," Operations Research, INFORMS, vol. 54(4), pages 656-665, August.
    10. Tavakoli, Ibrahim M. & Mostafaee, Amin, 2019. "Free disposal hull efficiency scores of units with network structures," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1027-1036.
    11. Henry Tulkens, 2006. "On FDH Efficiency Analysis: Some Methodological Issues and Applications to Retail Banking, Courts and Urban Transit," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 311-342, Springer.
    12. Walter Briec & Kristiaan Kerstens, 2006. "Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 135-166, June.
    13. Victor V. Podinovski & Ole Bent Olesen & Cláudia S. Sarrico, 2018. "Nonparametric Production Technologies with Multiple Component Processes," Operations Research, INFORMS, vol. 66(1), pages 282-300, January.
    14. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    15. Antonio Peyrache & Maria C. A. Silva, 2023. "Efficiency decomposition for multi-level multi-components production technologies," Journal of Productivity Analysis, Springer, vol. 60(3), pages 273-294, December.
    16. Kristiaan Kerstens & Ignace Van de Woestyne, 2021. "Cost functions are nonconvex in the outputs when the technology is nonconvex: convexification is not harmless," Annals of Operations Research, Springer, vol. 305(1), pages 81-106, October.
    17. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2001. "FDH Directional Distance Functions with an Application to European Commercial Banks," Journal of Productivity Analysis, Springer, vol. 15(3), pages 201-215, January.
    18. Victor V. Podinovski, 2022. "Variable and Constant Returns-to-Scale Production Technologies with Component Processes," Operations Research, INFORMS, vol. 70(2), pages 1238-1258, March.
    19. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Multicomponent production technologies with restricted allocations of shared inputs and outputs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 274-289.
    20. Podinovski, V. V., 2004. "On the linearisation of reference technologies for testing returns to scale in FDH models," European Journal of Operational Research, Elsevier, vol. 152(3), pages 800-802, February.
    21. Cherchye, Laurens & De Rock, Bram & Walheer, Barnabé, 2016. "Multi-output profit efficiency and directional distance functions," Omega, Elsevier, vol. 61(C), pages 100-109.
    22. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    23. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    24. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2000. "What Is the Economic Meaning of FDH? A Reply to Thrall," Journal of Productivity Analysis, Springer, vol. 13(3), pages 263-267, May.
    25. Walheer, Barnabé & Zhang, Linjia, 2018. "Profit Luenberger and Malmquist-Luenberger indexes for multi-activity decision making units: the case of the star-rated hotel industry in China," RIEI Working Papers 2018-06, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
    26. Wade D. Cook & Joe Zhu, 2011. "Multiple Variable Proportionality in Data Envelopment Analysis," Operations Research, INFORMS, vol. 59(4), pages 1024-1032, August.
    27. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    28. E Thanassoulis & M Kortelainen & G Johnes & J Johnes, 2011. "Costs and efficiency of higher education institutions in England: a DEA analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1282-1297, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood Mehdiloo & Jafar Sadeghi & Kristiaan Kerstens, 2024. "Top Down Axiomatic Modeling of Metatechnologies and Evaluating Directional Economic Efficiency," Working Papers 2024-EQM-03, IESEG School of Management.
    2. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    3. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    4. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Multicomponent production technologies with restricted allocations of shared inputs and outputs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 274-289.
    5. Tavakoli, Ibrahim M. & Mostafaee, Amin, 2019. "Free disposal hull efficiency scores of units with network structures," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1027-1036.
    6. Majid Azadi & Balal Karimi & William Ho & Reza Farzipoor Saen, 2022. "Assessing green performance of power plants by multiple hybrid returns to scale technologies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1177-1211, December.
    7. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    8. Xiaoqing Chen & Kristiaan Kerstens & Qingyuan Zhu, 2025. "Exploring horizontal mergers in Swedish district courts using technical and scale efficiency: rejecting convexity in favour of nonconvexity," Annals of Operations Research, Springer, vol. 351(2), pages 1319-1351, August.
    9. Soleimani-damaneh, Majid & Mostafaee, Amin, 2015. "Identification of the anchor points in FDH models," European Journal of Operational Research, Elsevier, vol. 246(3), pages 936-943.
    10. Walter Briec & Kristiaan Kerstens & Ignace Van de Woestyne, 2022. "Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 18, pages 721-754, Springer.
    11. Leleu, Herve, 2006. "A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models," European Journal of Operational Research, Elsevier, vol. 168(2), pages 340-344, January.
    12. H Leleu, 2009. "Mixing DEA and FDH models together," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1730-1737, December.
    13. Zhou, Wenzhuo & Shen, Zhiyang & Vardanyan, Michael & Song, Malin, 2025. "Assessing energy transition using exponential production technology under different convexity assumptions," Energy Economics, Elsevier, vol. 146(C).
    14. Kerstens, Kristiaan & Sadeghi, Jafar & Toloo, Mehdi & Van de Woestyne, Ignace, 2022. "Procedures for ranking technical and cost efficient units: With a focus on nonconvexity," European Journal of Operational Research, Elsevier, vol. 300(1), pages 269-281.
    15. Barnabé Walheer, 2019. "Disaggregation for efficiency analysis," Journal of Productivity Analysis, Springer, vol. 51(2), pages 137-151, June.
    16. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    17. Podinovski, Victor V. & Bouzdine-Chameeva, Tatiana, 2019. "Cone extensions of polyhedral production technologies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 736-743.
    18. Kristof Witte & Rui Marques, 2011. "Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 213-226, June.
    19. Ali Emrouznejad & Victor Podinovski & Vincent Charles & Chixiao Lu & Amir Moradi-Motlagh, 2025. "Rajiv Banker’s lasting impact on data envelopment analysis," Annals of Operations Research, Springer, vol. 351(2), pages 1225-1264, August.
    20. Walter Briec & Kristiaan Kerstens, 2006. "Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 135-166, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:351:y:2025:i:2:d:10.1007_s10479-024-06140-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.