IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v350y2025i3d10.1007_s10479-025-06626-4.html
   My bibliography  Save this article

Modeling and solving an integrated periodic vehicle routing and capacitated facility location problem in the context of solid waste collection

Author

Listed:
  • Begoña González

    (Universidad de Las Palmas de Gran Canaria)

  • Diego Rossit

    (Universidad Nacional del Sur-CONICET)

  • Mariano Frutos

    (Universidad Nacional del Sur-CONICET)

  • Máximo Méndez

    (Universidad de Las Palmas de Gran Canaria)

Abstract

Few activities are as crucial in urban environments as waste management. Mismanagement of waste can cause significant economic, social, and environmental damage. However, waste management is often a complex system to manage and therefore where computational decision-support tools can play a pivotal role in assisting managers to make faster and better decisions. In this sense, this article proposes, on the one hand, a unified optimization model to address two common waste management system optimization problem: the determination of the capacity of waste bins in the collection network and the design and scheduling of collection routes. The integration of these two problems is not usual in the literature since each of them separately is already a major computational challenge. Two improved exact formulations based on mathematical programming and two metaheuristic methods are provided to solve this proposed unified optimization model. It should be noted that the metaheuristics consider a mixed chromosome representation of the solutions combining binary and integer alleles, in order to solve realistic instances of this complex problem. Different parameters of the metaheuristics considered – a Genetic Algorithm and a Simulated Annealing algorithm – have been tested to study which combination of them obtained better results in execution times on the order of that of the exact solvers. The achieved results show that the proposed metaheuristic methods perform efficient on large instances, where exact formulations are not applicable, and offer feasible, high-quality solutions in reasonable calculation times.

Suggested Citation

  • Begoña González & Diego Rossit & Mariano Frutos & Máximo Méndez, 2025. "Modeling and solving an integrated periodic vehicle routing and capacitated facility location problem in the context of solid waste collection," Annals of Operations Research, Springer, vol. 350(3), pages 979-1015, July.
  • Handle: RePEc:spr:annopr:v:350:y:2025:i:3:d:10.1007_s10479-025-06626-4
    DOI: 10.1007/s10479-025-06626-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-025-06626-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-025-06626-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Michael L. Bynum & Gabriel A. Hackebeil & William E. Hart & Carl D. Laird & Bethany L. Nicholson & John D. Siirola & Jean-Paul Watson & David L. Woodruff, 2021. "Pyomo — Optimization Modeling in Python," Springer Optimization and Its Applications, Springer, edition 3, number 978-3-030-68928-5, March.
    2. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.
    3. Cornuejols, G. & Sridharan, R. & Thizy, J. M., 1991. "A comparison of heuristics and relaxations for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 50(3), pages 280-297, February.
    4. Vera C. Hemmelmayr & Karl F. Doerner & Richard F. Hartl & Daniele Vigo, 2014. "Models and Algorithms for the Integrated Planning of Bin Allocation and Vehicle Routing in Solid Waste Management," Transportation Science, INFORMS, vol. 48(1), pages 103-120, February.
    5. Arthur Mahéo & Diego Gabriel Rossit & Philip Kilby, 2023. "Solving the integrated bin allocation and collection routing problem for municipal solid waste: a Benders decomposition approach," Annals of Operations Research, Springer, vol. 322(1), pages 441-465, March.
    6. Archetti, Claudia & Ljubić, Ivana, 2022. "Comparison of formulations for the Inventory Routing Problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 997-1008.
    7. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    8. Vera Hemmelmayr & Karen Smilowitz & Luis de la Torre, 2017. "A periodic location routing problem for collaborative recycling," IISE Transactions, Taylor & Francis Journals, vol. 49(4), pages 414-428, April.
    9. Mar Carlos & Antonio Gallardo & Natalia Edo-Alcón & Juan Ramón Abaso, 2019. "Influence of the Municipal Solid Waste Collection System on the Time Spent at a Collection Point: A Case Study," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Hess & Alina G. Dragomir & Karl F. Doerner & Daniele Vigo, 2024. "Waste collection routing: a survey on problems and methods," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 399-434, June.
    2. Gläser, Sina & Stücken, Mareike, 2021. "Introduction of an underground waste container system–model and solution approaches," European Journal of Operational Research, Elsevier, vol. 295(2), pages 675-689.
    3. Spinelli, Andrea & Maggioni, Francesca & Ramos, Tânia Rodrigues Pereira & Barbosa-Póvoa, Ana Paula & Vigo, Daniele, 2025. "A rolling horizon heuristic approach for a multi-stage stochastic waste collection problem," European Journal of Operational Research, Elsevier, vol. 323(1), pages 276-296.
    4. Arthur Mahéo & Diego Gabriel Rossit & Philip Kilby, 2023. "Solving the integrated bin allocation and collection routing problem for municipal solid waste: a Benders decomposition approach," Annals of Operations Research, Springer, vol. 322(1), pages 441-465, March.
    5. Gläser, Sina, 2022. "A waste collection problem with service type option," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1216-1230.
    6. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    7. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    8. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    9. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    10. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
    11. Feng Dai & Yi Chen, 2023. "Integrated dynamic municipal solid waste transfer station location decision study based on the dynamic MSW generation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6033-6047, July.
    12. Verbiest, Floor & Cornelissens, Trijntje & Springael, Johan, 2019. "A matheuristic approach for the design of multiproduct batch plants with parallel production lines," European Journal of Operational Research, Elsevier, vol. 273(3), pages 933-947.
    13. Harkness, Joseph & ReVelle, Charles, 2003. "Facility location with increasing production costs," European Journal of Operational Research, Elsevier, vol. 145(1), pages 1-13, February.
    14. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    15. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    16. Jih-Jeng Huang, 2016. "Resource decision making for vertical and horizontal integration problems in an enterprise," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1363-1372, November.
    17. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    18. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    19. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    20. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:350:y:2025:i:3:d:10.1007_s10479-025-06626-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.