IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v303y2022i3p1216-1230.html
   My bibliography  Save this article

A waste collection problem with service type option

Author

Listed:
  • Gläser, Sina

Abstract

Efficient solid waste management is one of the most relevant issues for urban communities. With regard to the service type of household waste collection, there are two approaches in practice: when collecting household waste via a door-to-door system, the collection vehicles drive down all the streets to empty the garbage cans on the curb. Using a bring system, waste is accumulated at central collection sites with a larger capacity. While residents do have to travel an additional distance to dispose of their waste at these central collection sites, a bring system can reduce the distance to be covered by collection vehicles because they no longer have to drive down all the streets. To combine the advantages of both systems, in this article the service type decision is introduced. The corresponding waste collection problem with service type option (WCPSTO) is modeled as a new variant of a periodic location routing problem and an adaptive large neighborhood search-based solution approach is proposed. This solution approach not only solves the newly presented problem, but also outperforms a solution algorithm for a related waste collection problem seen in the literature, which can be seen as a special case of the WCPSTO.

Suggested Citation

  • Gläser, Sina, 2022. "A waste collection problem with service type option," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1216-1230.
  • Handle: RePEc:eee:ejores:v:303:y:2022:i:3:p:1216-1230
    DOI: 10.1016/j.ejor.2022.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722002557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Akeb, Hakim & Moncef, Btissam & Durand, Bruno, 2018. "Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 223-233.
    4. Salhi, Said & Rand, Graham K., 1989. "The effect of ignoring routes when locating depots," European Journal of Operational Research, Elsevier, vol. 39(2), pages 150-156, March.
    5. Gambella, Claudio & Maggioni, Francesca & Vigo, Daniele, 2019. "A stochastic programming model for a tactical solid waste management problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 684-694.
    6. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    8. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    9. S Coene & A Arnout & F C R Spieksma, 2010. "On a periodic vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(12), pages 1719-1728, December.
    10. E Angelelli & M G Speranza, 2002. "The application of a vehicle routing model to a waste-collection problem: two case studies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 944-952, September.
    11. Vera Hemmelmayr & Karen Smilowitz & Luis de la Torre, 2017. "A periodic location routing problem for collaborative recycling," IISE Transactions, Taylor & Francis Journals, vol. 49(4), pages 414-428, April.
    12. Kulkarni, R. V. & Bhave, P. R., 1985. "Integer programming formulations of vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 20(1), pages 58-67, April.
    13. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    14. Zhou, Lin & Baldacci, Roberto & Vigo, Daniele & Wang, Xu, 2018. "A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution," European Journal of Operational Research, Elsevier, vol. 265(2), pages 765-778.
    15. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    16. Maximilian Schiffer & Grit Walther, 2018. "An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities," Transportation Science, INFORMS, vol. 52(2), pages 331-352, March.
    17. Bruno Durand & Hakim Akeb & Btissam Moncef, 2018. "Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris [L'élaboration d'une solution collaborative de livraisons urbaines en vu," Post-Print hal-01781155, HAL.
    18. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    19. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    20. Caroline Prodhon, 2008. "A Metaheuristic for the Periodic Location-Routing Problem," Operations Research Proceedings, in: Jörg Kalcsics & Stefan Nickel (ed.), Operations Research Proceedings 2007, pages 159-164, Springer.
    21. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    22. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    23. Vera C. Hemmelmayr & Karl F. Doerner & Richard F. Hartl & Daniele Vigo, 2014. "Models and Algorithms for the Integrated Planning of Bin Allocation and Vehicle Routing in Solid Waste Management," Transportation Science, INFORMS, vol. 48(1), pages 103-120, February.
    24. Kara, Imdat & Laporte, Gilbert & Bektas, Tolga, 2004. "A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(3), pages 793-795, November.
    25. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    26. Nguyen, Viet-Phuong & Prins, Christian & Prodhon, Caroline, 2012. "Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking," European Journal of Operational Research, Elsevier, vol. 216(1), pages 113-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    2. Gläser, Sina & Stücken, Mareike, 2021. "Introduction of an underground waste container system–model and solution approaches," European Journal of Operational Research, Elsevier, vol. 295(2), pages 675-689.
    3. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    5. Wolfinger, David & Gansterer, Margaretha & Doerner, Karl F. & Popper, Nikolas, 2023. "A Large Neighbourhood Search Metaheuristic for the Contagious Disease Testing Problem," European Journal of Operational Research, Elsevier, vol. 304(1), pages 169-182.
    6. Singh, Nitish & Dang, Quang-Vinh & Akcay, Alp & Adan, Ivo & Martagan, Tugce, 2022. "A matheuristic for AGV scheduling with battery constraints," European Journal of Operational Research, Elsevier, vol. 298(3), pages 855-873.
    7. Jaller, Miguel & Pahwa, Anmol, 2023. "Coping with the Rise of E-commerce Generated Home Deliveries through Innovative Last-mile Technologies and Strategies," Institute of Transportation Studies, Working Paper Series qt5t76x0kh, Institute of Transportation Studies, UC Davis.
    8. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.
    9. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The fleet size and mix location-routing problem with time windows: Formulations and a heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 248(1), pages 33-51.
    10. Bagheri Hosseini, Mozhde & Dehghanian, Farzad & Salari, Majid, 2019. "Selective capacitated location-routing problem with incentive-dependent returns in designing used products collection network," European Journal of Operational Research, Elsevier, vol. 272(2), pages 655-673.
    11. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    12. Maximilian Schiffer & Grit Walther, 2018. "An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities," Transportation Science, INFORMS, vol. 52(2), pages 331-352, March.
    13. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    14. Snoeck, André & Winkenbach, Matthias, 2020. "The value of physical distribution flexibility in serving dense and uncertain urban markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 151-177.
    15. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.
    16. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    17. Hendri Sutrisno & Chao-Lung Yang, 2023. "A two-echelon location routing problem with mobile satellites for last-mile delivery: mathematical formulation and clustering-based heuristic method," Annals of Operations Research, Springer, vol. 323(1), pages 203-228, April.
    18. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    19. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    20. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:303:y:2022:i:3:p:1216-1230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.