IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i1d10.1007_s10479-023-05545-6.html
   My bibliography  Save this article

A decision support system in precision medicine: contrastive multimodal learning for patient stratification

Author

Listed:
  • Qing Yin

    (University of Manchester)

  • Linda Zhong

    (Nanyang Technological University)

  • Yunya Song

    (Hong Kong Baptist University)

  • Liang Bai

    (Shanxi University)

  • Zhihua Wang

    (China Shanghai Institute for Advanced Study of Zhejiang University)

  • Chen Li

    (Huazhong University of Science and Technology)

  • Yida Xu

    (Hong Kong Baptist University)

  • Xian Yang

    (University of Manchester)

Abstract

Precision medicine aims to provide personalized healthcare for patients by stratifying them into subgroups based on their health conditions, enabling the development of tailored medical management. Various decision support systems (DSSs) are increasingly developed in this field, where the performance is limited to their capability of handling big amounts of heterogeneous and high-dimensional electronic health records (EHRs). In this paper, we focus on developing a deep learning model for patient stratification that can identify and explain patient subgroups from multimodal EHRs. The primary challenge is to effectively align and unify heterogeneous information from various modalities, which includes both unstructured and structured data. Here, we develop a Contrastive Multimodal learning model for EHR (ConMEHR) based on topic modelling. In ConMEHR, modality-level and topic-level contrastive learning (CL) mechanisms are adopted to obtain a unified representation space and diversify patient subgroups, respectively. The performance of ConMEHR will be evaluated on two real-world EHR datasets and the results show that our model outperforms other baseline methods.

Suggested Citation

  • Qing Yin & Linda Zhong & Yunya Song & Liang Bai & Zhihua Wang & Chen Li & Yida Xu & Xian Yang, 2025. "A decision support system in precision medicine: contrastive multimodal learning for patient stratification," Annals of Operations Research, Springer, vol. 348(1), pages 579-607, May.
  • Handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05545-6
    DOI: 10.1007/s10479-023-05545-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05545-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05545-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Forecast bankruptcy using a blend of clustering and MARS model: case of US banks," Annals of Operations Research, Springer, vol. 281(1), pages 27-64, October.
    3. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Forecast bankruptcy using a blend of clustering and MARS model: case of US banks," Post-Print hal-03045877, HAL.
    4. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Forecast bankruptcy using a blend of clustering and MARS model: case of US banks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03045877, HAL.
    5. Philippe Jardin, 2021. "Forecasting bankruptcy using biclustering and neural network-based ensembles," Annals of Operations Research, Springer, vol. 299(1), pages 531-566, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. K. Viswanathan & Suresh Srinivasan & N. Hariharan, 2020. "Predicting Financial Health of Banks for Investor Guidance Using Machine Learning Algorithms," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 19(2), pages 226-261, August.
    2. Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    3. Jinghai Shao & Sovan Mitra & Andreas Karathanasopoulos, 2022. "Optimal feedback control of stock prices under credit risk dynamics," Annals of Operations Research, Springer, vol. 313(2), pages 1285-1318, June.
    4. Philippe Jardin, 2025. "Designing Ensemble-Based Models Using Neural Networks and Temporal Financial Profiles to Forecast Firms’ Financial Failure," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 149-209, January.
    5. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    6. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    7. Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    8. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    10. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    11. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 2020_09, Business School - Economics, University of Glasgow.
    13. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    14. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    15. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    16. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    17. Alex Burnap & John R. Hauser & Artem Timoshenko, 2023. "Product Aesthetic Design: A Machine Learning Augmentation," Marketing Science, INFORMS, vol. 42(6), pages 1029-1056, November.
    18. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    19. Stéphane Bonhomme, 2021. "Selection on Welfare Gains: Experimental Evidence from Electricity Plan Choice," Working Papers 2021-15, Becker Friedman Institute for Research In Economics.
    20. Junming Yin & Jerry Luo & Susan A. Brown, 2021. "Learning from Crowdsourced Multi-labeling: A Variational Bayesian Approach," Information Systems Research, INFORMS, vol. 32(3), pages 752-773, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05545-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.