MRDCA: a multimodal approach for fine-grained fake news detection through integration of RoBERTa and DenseNet based upon fusion mechanism of co-attention
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-022-05154-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Patacconi, Andrea & Vikander, Nick, 2015. "A model of public opinion management," Journal of Public Economics, Elsevier, vol. 128(C), pages 73-83.
- Shannon M. Fast & Louis Kim & Emily L. Cohn & Sumiko R. Mekaru & John S. Brownstein & Natasha Markuzon, 2018. "Predicting social response to infectious disease outbreaks from internet-based news streams," Annals of Operations Research, Springer, vol. 263(1), pages 551-564, April.
- Efsun Kürüm & Gerhard-Wilhelm Weber & Cem Iyigun, 2018. "Early warning on stock market bubbles via methods of optimization, clustering and inverse problems," Annals of Operations Research, Springer, vol. 260(1), pages 293-320, January.
- Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Contessi, Silvio & De Pace, Pierangelo & Guidolin, Massimo, 2020.
"Mildly explosive dynamics in U.S. fixed income markets,"
European Journal of Operational Research, Elsevier, vol. 287(2), pages 712-724.
- Contessi, Silvio & De Pace, Pierangelo & Guidolin, Massimo, "undated". "Mildly Explosive Dynamics in U.S. Fixed Income Markets," Economics Department, Working Paper Series 1001, Economics Department, Pomona College, revised 12 Feb 2020.
- Silvio Contessi & Pierangelo De Pace & Massimo Guidolin, 2020. "Mildly Explosive Dynamics in U.S. Fixed Income Markets," Working Papers 667, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Silvio Contessi & Pierangelo De Pace & Massimo Guidolin, 2017. "Mildly Explosive Dynamics in U.S. Fixed Income Markets," Globalization Institute Working Papers 324, Federal Reserve Bank of Dallas.
- Huosong Xia & Jing Liu & Zuopeng Justin Zhang, 2024. "Identifying Fintech risk through machine learning: analyzing the Q&A text of an online loan investment platform," Annals of Operations Research, Springer, vol. 333(2), pages 579-599, February.
- Angelo Corallo & Fabrizio Errico & Laura Fortunato & Alessandra Spennato & Cristina Blasi, 2024. "Effects Influence of Social Media Constructs on Shopping: An Empirical Study on the Prediction of Retail Clothing Sales," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 18257-18285, December.
- Francisco de Arriba-P'erez & Silvia Garc'ia-M'endez & Jos'e A. Regueiro-Janeiro & Francisco J. Gonz'alez-Casta~no, 2024. "Detection of financial opportunities in micro-blogging data with a stacked classification system," Papers 2404.07224, arXiv.org.
- Gergo Pinter & Imre Felde & Amir Mosavi & Pedram Ghamisi & Richard Gloaguen, 2020. "COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
- Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
- Wang, Wei & Guo, Lihuan & Wu, Yenchun Jim, 2022. "The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
- Jose Ramon Saura & Domingo Ribeiro-Soriano & Daniel Palacios-Marqués, 2024. "Data-driven strategies in operation management: mining user-generated content in Twitter," Annals of Operations Research, Springer, vol. 333(2), pages 849-869, February.
- Shugang Li & Fang Liu & Yuqi Zhang & Boyi Zhu & He Zhu & Zhaoxu Yu, 2022. "Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review," Mathematics, MDPI, vol. 10(19), pages 1-26, September.
- Erfan Mehmanchi & Andrés Gómez & Oleg A. Prokopyev, 2021. "Solving a class of feature selection problems via fractional 0–1 programming," Annals of Operations Research, Springer, vol. 303(1), pages 265-295, August.
- Jaeseung Baek & Myong K. Jeong & Elsayed A. Elsayed, 2024. "Spatial randomness-based anomaly detection approach for monitoring local variations in multimode surface topography," Annals of Operations Research, Springer, vol. 341(1), pages 173-195, October.
- M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
- Foerster, Manuel & Voss, Achim, 2022. "Believe me, I am ignorant, but not biased," European Economic Review, Elsevier, vol. 149(C).
- Baranowski Paweł & Korczak Karol & Zając Jarosław, 2020. "Forecasting Cinema Attendance at the Movie Show Level: Evidence from Poland," Business Systems Research, Sciendo, vol. 11(1), pages 73-88, March.
- Silvia Garc'ia-M'endez & Francisco de Arriba-P'erez & Ana Barros-Vila & Francisco J. Gonz'alez-Casta~no, 2024. "Targeted aspect-based emotion analysis to detect opportunities and precaution in financial Twitter messages," Papers 2404.08665, arXiv.org.
- Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
- Matteo Cinelli & Valerio Ficcadenti & Jessica Riccioni, 2020. "The interconnectedness of the economic content in the speeches of the US Presidents," Papers 2002.07880, arXiv.org.
- Roy Cerqueti & Mario Maggi & Jessica Riccioni, 2024. "Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk," Annals of Operations Research, Springer, vol. 342(3), pages 1445-1469, November.
- Serge Nyawa & Dieudonné Tchuente & Samuel Fosso-Wamba, 2024. "COVID-19 vaccine hesitancy: a social media analysis using deep learning," Annals of Operations Research, Springer, vol. 339(1), pages 477-515, August.
More about this item
Keywords
MRDCA; Fake news detection; Multimodal features; Fine-grained classification; Co-attention;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-022-05154-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.