IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i1d10.1007_s10479-022-04911-0.html
   My bibliography  Save this article

Network reliability evaluation of manufacturing systems by using a deep learning approach

Author

Listed:
  • Cheng-Fu Huang

    (Feng Chia University)

  • Ding-Hsiang Huang

    (Tunghai University)

  • Yi-Kuei Lin

    (National Yang Ming Chiao Tung University
    Chaoyang University of Technology
    China Medical University Hospital, China Medical University
    Asia University)

  • Yi-Fan Chen

    (National Yang Ming Chiao Tung University)

Abstract

A manufacturing system with reworking actions is constructed as a stochastic-flow manufacturing networks (SFMN) because components (arcs and nodes) are with multi-state capacity. Network reliability is a useful indicator of the performance of an SFMN. It is defined as the probability that that a SFMN can satisfy a given demand. However, the network scale becomes complex in the environment of Industry 4.0 and big data context. The algorithm YKLIN (Lin and Chang in Computers & Industrial Engineering 63:1209–1219, 2012b) cannot calculate network reliability in time for those large cases. For responding network reliability immediately, this paper utilizes an architecture of a deep neural network (DNN) to propose a prediction model for network reliability evaluation. The proposed prediction model can estimate network reliability with a small error (root-mean-square error (RMSE) = 0.0022) in the numerical case. Furthermore, compared to the algorithm YKLIN, the computational time is significantly reduced for a large tile manufacturing system with 14 production lines. In detail, the algorithm YKLIN takes 56.78 s for evaluating network reliability of each data point, whereas the proposed model only takes 0.02 s. The proposed DNN model provides a feasible and efficient approach to achieve network reliability immediately for the real-world manufacturing system in the industry 4.0 environment.

Suggested Citation

  • Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin & Yi-Fan Chen, 2025. "Network reliability evaluation of manufacturing systems by using a deep learning approach," Annals of Operations Research, Springer, vol. 348(1), pages 75-92, May.
  • Handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-022-04911-0
    DOI: 10.1007/s10479-022-04911-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04911-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04911-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaofeng Da & Maochao Xu & Ping Shing Chan, 2018. "An efficient algorithm for computing the signatures of systems with exchangeable components and applications," IISE Transactions, Taylor & Francis Journals, vol. 50(7), pages 584-595, July.
    2. Guanghan Bai & Zhigang Tian & Ming J. Zuo, 2018. "Reliability evaluation of multistate networks: An improved algorithm using state-space decomposition and experimental comparison," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 407-418, May.
    3. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao & Chih-Ching Yeh, 2017. "System reliability for a multistate intermodal logistics network with time windows," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1957-1969, April.
    4. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    5. Jane, Chin-Chia & Laih, Yih-Wenn, 2017. "Distribution and reliability evaluation of max-flow in dynamic multi-state flow networks," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1045-1053.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Gilberto Santos & Jose Carlos Sá & Maria João Félix & Luís Barreto & Filipe Carvalho & Manuel Doiro & Kristína Zgodavová & Miladin Stefanović, 2021. "New Needed Quality Management Skills for Quality Managers 4.0," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    3. Verônica Maurer Tabim & Néstor Fabián Ayala & Alejandro G. Frank, 2024. "Implementing Vertical Integration in the Industry 4.0 Journey: Which Factors Influence the Process of Information Systems Adoption?," Information Systems Frontiers, Springer, vol. 26(5), pages 1615-1632, October.
    4. Michal Gluszak & Remigiusz Gawlik & Malgorzata Zieba, 2019. "Smart and Green Buildings Features in the Decision-Making Hierarchy of Office Space Tenants: An Analytic Hierarchy Process Study," Administrative Sciences, MDPI, vol. 9(3), pages 1-16, July.
    5. Tortorella, Guilherme Luz & Narayanamurthy, Gopalakrishnan & Thurer, Matthias, 2021. "Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Ismael Cristofer Baierle & Francisco Tardelli da Silva & Ricardo Gonçalves de Faria Correa & Jones Luís Schaefer & Matheus Becker Da Costa & Guilherme Brittes Benitez & Elpidio Oscar Benitez Nara, 2022. "Competitiveness of Food Industry in the Era of Digital Transformation towards Agriculture 4.0," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    7. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    8. Bigatti, A.M. & Pascual-Ortigosa, P. & Sáenz-de-Cabezón, E., 2021. "A C++ class for multi-state algebraic reliability computations," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Xi, Mengjie & Liu, Yang & Fang, Wei & Feng, Taiwen, 2024. "Intelligent manufacturing for strengthening operational resilience during the COVID-19 pandemic: A dynamic capability theory perspective," International Journal of Production Economics, Elsevier, vol. 267(C).
    10. Jamal El Baz & Anass Cherrafi & Abla Chaouni Benabdellah & Kamar Zekhnini & Jean Noel Beka Be Nguema & Ridha Derrouiche, 2023. "Environmental Supply Chain Risk Management for Industry 4.0: A Data Mining Framework and Research Agenda," Post-Print hal-04335003, HAL.
    11. Esther Calderon-Monge & Domingo Ribeiro-Soriano, 2024. "The role of digitalization in business and management: a systematic literature review," Review of Managerial Science, Springer, vol. 18(2), pages 449-491, February.
    12. Olumide Emmanuel Oluyisola & Fabio Sgarbossa & Jan Ola Strandhagen, 2020. "Smart Production Planning and Control: Concept, Use-Cases and Sustainability Implications," Sustainability, MDPI, vol. 12(9), pages 1-29, May.
    13. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    14. Mykola Odrekhivskyi & Orysya Pshyk-Kovalska & Volodymyr Zhezhukha & Iryna Ivanochko, 2022. "Intelligent Management of Enterprise Business Processes," Mathematics, MDPI, vol. 11(1), pages 1-15, December.
    15. Livio Cricelli & Serena Strazzullo, 2021. "The Economic Aspect of Digital Sustainability: A Systematic Review," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    16. Moustafa Elnadi & Yasser Omar Abdallah, 2024. "Industry 4.0: critical investigations and synthesis of key findings," Management Review Quarterly, Springer, vol. 74(2), pages 711-744, June.
    17. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    18. Siqing Shan & Xin Wen & Yigang Wei & Zijin Wang & Yong Chen, 2020. "Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 679-690, July.
    19. Natália Barbosa, 2024. "Artificial Intelligence and exporting performance:Firm-level evidence from Portugal," GEE Papers 183, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Sep 2024.
    20. Bai, Chunguang & Dallasega, Patrick & Orzes, Guido & Sarkis, Joseph, 2020. "Industry 4.0 technologies assessment: A sustainability perspective," International Journal of Production Economics, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-022-04911-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.