Operational research insights on risk, resilience & dynamics of financial & economic systems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-024-05869-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Amina-Feriel Baba & Sana Ben Kebaier & Anna Creti, 2022. "How efficient are natural gas markets in practice? A wavelet-based approach," Post-Print hal-03958311, HAL.
- Eric Djeutcha & Jules Sadefo Kamdem, 2024.
"Pricing for a vulnerable bull spread options using a mixed modified fractional Hull–White–Vasicek model,"
Annals of Operations Research, Springer, vol. 334(1), pages 101-131, March.
- Eric Djeutcha & Jules Sadefo Kamdem, 2022. "Pricing for a vulnerable bull spread options using a mixed modified fractional Hull-White-Vasicek model," Post-Print hal-03675886, HAL.
- Huosong Xia & Juan Weng & Sabri Boubaker & Zuopeng Zhang & Sajjad M. Jasimuddin, 2024.
"Cross-influence of information and risk effects on the IPO market: exploring risk disclosure with a machine learning approach,"
Annals of Operations Research, Springer, vol. 334(1), pages 761-797, March.
- H. Xia & J. Weng & S. Boubaker & Z. Zhang & S.M. Jasimuddin, 2022. "Cross-Influence of Information and Risk Effects on the IPO Market: Exploring Risk Disclosure with a Machine Learning Approach," Post-Print hal-04445053, HAL.
- Philippe Bertrand, 2022. "Black-scholes approximation of warrant prices: slight return in a low interest rate environment," Post-Print hal-03646980, HAL.
- Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2021. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Post-Print hal-03331805, HAL.
- Waël Louhichi & Nadia Saghi-Zedek & Zainab Srour & Jean-Laurent Viviani, 2022. "The effect of liquidity creation on systemic risk: evidence from European banking sector," Post-Print hal-03775358, HAL.
- Philippe Bertrand, 2022. "Black-Scholes Approximation of Warrant Prices: Slight Return in a Low Interest Rate Environment," Post-Print hal-03672714, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
- Wu, Xihao & Shen, Yuezhe & Sun, Yani, 2024. "Can the registration system reform improve the disclosure quality?——Evidence from the ChiNext board," Journal of Contemporary Accounting and Economics, Elsevier, vol. 20(2).
- Guangchao Li & Zhaoqin Yi & Liqin Han & Ping Hu & Wei Chen & Xuefeng Ye & Zhen Yang, 2024. "The Synergistic Effect of the Same Climatic Factors on Water Use Efficiency Varies between Daily and Monthly Scales," Sustainability, MDPI, vol. 16(20), pages 1-20, October.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Dong Zhang & Pengkun Wu & Chong Wu & Eric W. T. Ngai, 2024. "Forecasting duty-free shopping demand with multisource data: a deep learning approach," Annals of Operations Research, Springer, vol. 339(1), pages 861-887, August.
- Yang, Yutao & Lan, Tian, 2024. "Boosting Sports Card Sales: Leveraging Visual Display and Machine Learning in Online Retail," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).
- Wei Li & Wolfgang Karl Hardle & Stefan Lessmann, 2022. "A Data-driven Case-based Reasoning in Bankruptcy Prediction," Papers 2211.00921, arXiv.org.
- Yang, Cai & Zhang, Hongwei & Weng, Futian, 2024. "Effects of COVID-19 vaccination programs on EU carbon price forecasts: Evidence from explainable machine learning," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
- Ngo, Vu Minh & Nguyen, Phuc Van & Hoang, Yen Hai, 2024. "The impacts of geopolitical risks on gold, oil and financial reserve management," Resources Policy, Elsevier, vol. 90(C).
- Damian Ślusarczyk & Robert Ślepaczuk, 2023. "Optimal Markowitz Portfolio Using Returns Forecasted with Time Series and Machine Learning Models," Working Papers 2023-17, Faculty of Economic Sciences, University of Warsaw.
- Kocaarslan, Baris, 2024. "US dollar and oil market uncertainty: New evidence from explainable machine learning," Finance Research Letters, Elsevier, vol. 64(C).
- Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
- Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
- Cucinelli, Doriana & Soana, Maria Gaia, 2023. "Systemic risk in non financial companies: Does governance matter?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Kocaarslan, Baris & Soytas, Ugur, 2023. "The role of major markets in predicting the U.S. municipal green bond market performance: New evidence from machine learning models," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Xiaojie Xu & Yun Zhang, 2023. "Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(4), pages 563-582, December.
- Kocaarslan, Baris & Mushtaq, Rizwan, 2024. "The impact of liquidity conditions on the time-varying link between U.S. municipal green bonds and major risky markets during the COVID-19 crisis: A machine learning approach," Energy Policy, Elsevier, vol. 184(C).
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2023. "Gold risk premium estimation with machine learning methods," Journal of Commodity Markets, Elsevier, vol. 31(C).
- Yuan Wang & Liping Yang & Jun Wu & Zisheng Song & Li Shi, 2022. "Mining Campus Big Data: Prediction of Career Choice Using Interpretable Machine Learning Method," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
More about this item
Keywords
Options pricing; Portfolio optimization; Risk management; Behavioral finance; Portfolio diversification; Risk spillover;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-024-05869-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.