IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i2d10.1007_s10479-023-05258-w.html
   My bibliography  Save this article

Reducing waste and achieving sustainable food security through optimizing surplus-food collection and meal distribution

Author

Listed:
  • Pei-Ju Wu

    (Feng Chia University)

  • Yu-Shan Lin

    (Taiwan Distribution Center Co., Ltd)

Abstract

Hunger among senior citizens is emerging as a considerable global problem, but social-welfare organizations’ efforts are limited by the complexities of safely collecting surplus food and targeting it to those in need. However, these logistical problems have received scant attention in the literature, an absence that this study addresses. This study develops a logistics approach to tackling the problems of long-term care operations’ surplus food collection and meal distribution, with the wider aim of achieving sustainable food security. The analytical results reveal that hub-and-spoke meal distribution was found to have better logistics performance than direct shipment. The critical logistics behaviors associated with long-term care organizations’ meal operations were also identified. Specifically, delivery times, donor numbers, and vehicle-loading rates were found to be the essential factors in determining optimal fleet size for long-term care logistics in the sharing economy. However, the results of this study also imply that social-welfare organizations should categorize senior citizens into groups that will facilitate the identification of suitable centers for hub-and-spoke shipment. Moreover, the major decision-making parameters of the proposed approaches can be tailored to other sets of specific circumstances that necessitate surplus-food collection and meal distribution. This pioneering study scrutinizes some critical issues involved in sustainable food security and provides effective approaches for overcoming them.

Suggested Citation

  • Pei-Ju Wu & Yu-Shan Lin, 2023. "Reducing waste and achieving sustainable food security through optimizing surplus-food collection and meal distribution," Annals of Operations Research, Springer, vol. 328(2), pages 1537-1555, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:2:d:10.1007_s10479-023-05258-w
    DOI: 10.1007/s10479-023-05258-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05258-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05258-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azizi, Vahid & Hu, Guiping, 2020. "Multi-product pickup and delivery supply chain design with location-routing and direct shipment," International Journal of Production Economics, Elsevier, vol. 226(C).
    2. Brian Kallehauge & Jesper Larsen & Oli B.G. Madsen & Marius M. Solomon, 2005. "Vehicle Routing Problem with Time Windows," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 67-98, Springer.
    3. Chen, Po-Chi & Yu, Ming-Miin & Shih, Jou-Chen & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2019. "A reassessment of the Global Food Security Index by using a hierarchical data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 272(2), pages 687-698.
    4. Remy Spliet & Adriana F. Gabor, 2015. "The Time Window Assignment Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 721-731, November.
    5. Koen Peters & Sérgio Silva & Tim Sergio Wolter & Luis Anjos & Nina van Ettekoven & Éric Combette & Anna Melchiori & Hein Fleuren & Dick den Hertog & Özlem Ergun, 2022. "UN World Food Programme: Toward Zero Hunger with Analytics," Interfaces, INFORMS, vol. 52(1), pages 8-26, January.
    6. H Yildiz & M P Johnson & S Roehrig, 2013. "Planning for meals-on-wheels: algorithms and application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(10), pages 1540-1550, October.
    7. Beullens, Patrick & Ghiami, Yousef, 2022. "Waste reduction in the supply chain of a deteriorating food item – Impact of supply structure on retailer performance," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1017-1034.
    8. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    9. D. G. Mogale & Sri Krishna Kumar & Manoj Kumar Tiwari, 2020. "Green food supply chain design considering risk and post-harvest losses: a case study," Annals of Operations Research, Springer, vol. 295(1), pages 257-284, December.
    10. Jinyan Zhan & Fan Zhang & Zhihui Li & Yue Zhang & Wei Qi, 2020. "Evaluation of food security based on DEA method: a case study of Heihe River Basin," Annals of Operations Research, Springer, vol. 290(1), pages 697-706, July.
    11. Manoj Dora & Joshua Wesana & Xavier Gellynck & Nitin Seth & Bidit Dey & Hans Steur, 2020. "Importance of sustainable operations in food loss: evidence from the Belgian food processing industry," Annals of Operations Research, Springer, vol. 290(1), pages 47-72, July.
    12. Ioannis Mallidis & Dimitrios Vlachos & Volha Yakavenka & Zafeiriou Eleni, 2020. "Development of a single period inventory planning model for perishable product redistribution," Annals of Operations Research, Springer, vol. 294(1), pages 697-713, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    2. Wassmuth, K. & Köhler, C. & Agatz, N.A.H. & Fleischmann, M., 2022. "Demand Management for Attended Home Delivery – A Literature Review," ERIM Report Series Research in Management ERS-2022-002-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Elżbieta Goryńska-Goldmann & Michał Gazdecki & Krystyna Rejman & Joanna Kobus-Cisowska & Sylwia Łaba & Robert Łaba, 2020. "How to Prevent Bread Losses in the Baking and Confectionery Industry?—Measurement, Causes, Management and Prevention," Agriculture, MDPI, vol. 11(1), pages 1-24, December.
    4. Subramanyam, Anirudh & Wang, Akang & Gounaris, Chrysanthos E., 2018. "A scenario decomposition algorithm for strategic time window assignment vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 296-317.
    5. Dollevoet, T.A.B. & Pecin, D. & Spliet, R., 2020. "The path programming problem and a partial path relaxation," Econometric Institute Research Papers EI-2020-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    7. Marlin W. Ulmer & Barrett W. Thomas, 2019. "Enough Waiting for the Cable Guy—Estimating Arrival Times for Service Vehicle Routing," Transportation Science, INFORMS, vol. 53(3), pages 897-916, May.
    8. Yang, Meng & Ni, Yaodong & Song, Qinyu, 2022. "Optimizing driver consistency in the vehicle routing problem under uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    10. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    11. Bruck, Bruno P. & Cordeau, Jean-François & Iori, Manuel, 2018. "A practical time slot management and routing problem for attended home services," Omega, Elsevier, vol. 81(C), pages 208-219.
    12. Tsang, Man Yiu & Shehadeh, Karmel S., 2023. "Stochastic optimization models for a home service routing and appointment scheduling problem with random travel and service times," European Journal of Operational Research, Elsevier, vol. 307(1), pages 48-63.
    13. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    14. Kevin Dalmeijer & Guy Desaulniers, 2021. "Addressing Orientation Symmetry in the Time Window Assignment Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 495-510, May.
    15. Annelieke C. Baller & Said Dabia & Wout E. H. Dullaert & Daniele Vigo, 2020. "The Vehicle Routing Problem with Partial Outsourcing," Transportation Science, INFORMS, vol. 54(4), pages 1034-1052, July.
    16. Han, Shuihua & Zhao, Ling & Chen, Kui & Luo, Zong-wei & Mishra, Deepa, 2017. "Appointment scheduling and routing optimization of attended home delivery system with random customer behavior," European Journal of Operational Research, Elsevier, vol. 262(3), pages 966-980.
    17. Yao, Yu & Van Woensel, Tom & Veelenturf, Lucas P. & Mo, Pengli, 2021. "The consistent vehicle routing problem considering path consistency in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 21-44.
    18. Waßmuth, Katrin & Köhler, Charlotte & Agatz, Niels & Fleischmann, Moritz, 2023. "Demand management for attended home delivery—A literature review," European Journal of Operational Research, Elsevier, vol. 311(3), pages 801-815.
    19. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    20. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:2:d:10.1007_s10479-023-05258-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.