IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i2d10.1007_s10479-020-03718-1.html
   My bibliography  Save this article

Multiple criteria ranking method based on functional proximity index: un-weighted TOPSIS

Author

Listed:
  • V. Liern

    (University of Valencia)

  • B. Pérez-Gladish

    (University of Oviedo)

Abstract

The technique for order preference by similarity to ideal solution (TOPSIS) is a widely used ranking method which provides a composite index representing the relative proximity of each decision alternative to an ideal solution. The relative proximity index construction relays on the use of a single criterion aggregation approach. Its output, regardless the certainty or uncertainty nature of the problem’s data, is usually a real number. In TOPSIS classical approach alternatives are ordered based on these numbers. The closer the number to 1, the higher the position of the alternative in the ranking. However, although the relative proximity index can be highly sensible to the weighting scheme, as far as the authors of this work know, the relative proximity index has never been treated as a function. In this work, a new TOPSIS approach is proposed in which weights are not fixed in an exact way a priori. On the contrary, they are handled as decision variables in a set of optimization problems where the objective is to maximize the relative proximity of each alternative to the ideal solution. The only possible a priori information about the weights is that related to the existence of upper and lower bounds in their values. This information is incorporated into the optimization problems as constraints. The result is a new relative proximity index which is a function depending on the values of the weights. This feature of the proposed method could be useful in some decision situations in which the determination of subjective precise weights from decision makers could be problematic.

Suggested Citation

  • V. Liern & B. Pérez-Gladish, 2022. "Multiple criteria ranking method based on functional proximity index: un-weighted TOPSIS," Annals of Operations Research, Springer, vol. 311(2), pages 1099-1121, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03718-1
    DOI: 10.1007/s10479-020-03718-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03718-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03718-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wątróbski, Jarosław & Jankowski, Jarosław & Ziemba, Paweł & Karczmarczyk, Artur & Zioło, Magdalena, 2019. "Generalised framework for multi-criteria method selection," Omega, Elsevier, vol. 86(C), pages 107-124.
    2. Alper, Değer & Başdar, Canan, 2017. "A Comparison of TOPSIS and ELECTRE Methods: An Application on the Factoring Industry," Business and Economics Research Journal, Uludag University, Faculty of Economics and Administrative Sciences, vol. 8(3), pages 627-646, July.
    3. Mareschal, Bertrand, 1988. "Weight stability intervals in multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 33(1), pages 54-64, January.
    4. Yeh, Chung-Hsing & J. Willis, Robert & Deng, Hepu & Pan, Hongqi, 1999. "Task oriented weighting in multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 119(1), pages 130-146, November.
    5. Canós, L. & Liern, V., 2008. "Soft computing-based aggregation methods for human resource management," European Journal of Operational Research, Elsevier, vol. 189(3), pages 669-681, September.
    6. Ouenniche, Jamal & Pérez-Gladish, Blanca & Bouslah, Kais, 2018. "An out-of-sample framework for TOPSIS-based classifiers with application in bankruptcy prediction," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 111-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tania, Fernández-García & Vicente, Liern & Blanca, Pérez-Gladish & Fernando, Rubiera-Morollón, 2022. "Measuring the territorial effort in research, development, and innovation from a multiple criteria approach: Application to the Spanish regions case," Technology in Society, Elsevier, vol. 70(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tania, Fernández-García & Vicente, Liern & Blanca, Pérez-Gladish & Fernando, Rubiera-Morollón, 2022. "Measuring the territorial effort in research, development, and innovation from a multiple criteria approach: Application to the Spanish regions case," Technology in Society, Elsevier, vol. 70(C).
    2. José Manuel Cabello & Francisco Ruiz & Blanca Pérez-Gladish, 2021. "An Alternative Aggregation Process for Composite Indexes: An Application to the Heritage Foundation Economic Freedom Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(2), pages 443-467, January.
    3. Olga Blasco-Blasco & Marina Liern-García & Aarón López-García & Sandra E. Parada-Rico, 2021. "An Academic Performance Indicator Using Flexible Multi-Criteria Methods," Mathematics, MDPI, vol. 9(19), pages 1-19, September.
    4. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    5. Meløn, Mønica García & Aragonés Beltran, Pablo & Carmen González Cruz, M., 2008. "An AHP-based evaluation procedure for Innovative Educational Projects: A face-to-face vs. computer-mediated case study," Omega, Elsevier, vol. 36(5), pages 754-765, October.
    6. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    7. Miller, Michael & Mattes, Katharina, 2014. "Demonstration of a multi-criteria based decision support framework for selecting PSS to increase resource efficiency," Working Papers "Sustainability and Innovation" S11/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    8. Chang, Yu-Hern & Yeh, Chung-Hsing, 2002. "A survey analysis of service quality for domestic airlines," European Journal of Operational Research, Elsevier, vol. 139(1), pages 166-177, May.
    9. Roux, O. & Duvivier, D. & Dhaevers, V. & Meskens, N. & Artiba, A., 2008. "Multicriteria approach to rank scheduling strategies," International Journal of Production Economics, Elsevier, vol. 112(1), pages 192-201, March.
    10. Ringuest, Jeffrey L., 1997. "LP-metric sensitivity analysis for single and multi-attribute decision analysis," European Journal of Operational Research, Elsevier, vol. 98(3), pages 563-570, May.
    11. Elias G. Carayannis & Luca Dezi & Gianluca Gregori & Ernesto Calo, 2022. "Smart Environments and Techno-centric and Human-Centric Innovations for Industry and Society 5.0: A Quintuple Helix Innovation System View Towards Smart, Sustainable, and Inclusive Solutions," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 926-955, June.
    12. Mohammad Rahman & Lena Jaumann & Nils Lerche & Fabian Renatus & Ann Buchs & Rudolf Gade & Jutta Geldermann & Martin Sauter, 2015. "Selection of the Best Inland Waterway Structure: A Multicriteria Decision Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2733-2749, June.
    13. Yan Xu & Chung-Hsing Yeh, 2017. "Sustainability-based selection decisions for e-waste recycling operations," Annals of Operations Research, Springer, vol. 248(1), pages 531-552, January.
    14. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    15. Ioan GIURCA & Ioan A?CHILEAN & C?lin Ovidiu SAFIRESCU & Dan MURE?AN, 2014. "Choosing Photovoltaic Panels Using The Promethee Method," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 8(1), pages 1087-1098, November.
    16. Agnieszka Konys, 2019. "Green Supplier Selection Criteria: From a Literature Review to a Comprehensive Knowledge Base," Sustainability, MDPI, vol. 11(15), pages 1-41, August.
    17. Marcio Pereira Basilio & Valdecy Pereira & Fatih Yigit, 2023. "New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies," Mathematics, MDPI, vol. 11(21), pages 1-34, October.
    18. Gohari, Adel & Ahmad, Anuar Bin & Balasbaneh, Ali Tighnavard & Gohari, Ali & Hasan, Razi & Sholagberu, Abdulkadir Taofeeq, 2022. "Significance of intermodal freight modal choice criteria: MCDM-based decision support models and SP-based modal shift policies," Transport Policy, Elsevier, vol. 121(C), pages 46-60.
    19. Merigó Lindahl, José M. & López-Jurado, María Pilar & Gracia Ramos, María Carmen, 2009. "A Decision Making Method for Educational Management Based on Distance Measures = Toma de decisiones en procesos de gestión de la educación basados en las medidas de distancia," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 8(1), pages 29-49, December.
    20. Cinzia Colapinto & Raja Jayaraman & Fouad Ben Abdelaziz & Davide La Torre, 2020. "Environmental sustainability and multifaceted development: multi-criteria decision models with applications," Annals of Operations Research, Springer, vol. 293(2), pages 405-432, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03718-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.