IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v295y2020i1d10.1007_s10479-020-03743-0.html
   My bibliography  Save this article

Optimal scheduling of airport ferry vehicles based on capacity network

Author

Listed:
  • Xue Han

    (Shandong University)

  • Peixin Zhao

    (Shandong University)

  • Qingchun Meng

    (Shandong University)

  • Shengnan Yin

    (Shandong University)

  • Di Wan

    (University of Victoria
    Fisheries and Oceans Canada)

Abstract

For daily airport operations, the insufficient number and the improper scheduling of ground support vehicles are the main causes of flight delays. In this paper, a novel network model is proposed to complement the optimal scheduling of ferry vehicles for the flight ground support service. In the process of model construction, we first innovatively construct a ferry vehicle capacity network by having the introduced virtual flights and the ferry vehicle depot as nodes, in which the directed edges indicate that the two nodes associated may be consecutively served by the same ferry vehicle. Based on the capacity network, a mixed integer programming model is constructed to minimize the number of ferry vehicles needed. In addition, this paper shows that the mixed integer programming is equivalent to a linear programming when the service start time of each flight is fixed, which makes the solving process more efficient, and the linear programming model can be applied to solve the minimum node-disjoint path cover of directed acyclic graphs. The efficiency and accuracy of the method are validated by the actual flight data obtained from Beijing Capital International Airport. This study will provide a methodological reference for the optimal scheduling of airport ferry vehicles.

Suggested Citation

  • Xue Han & Peixin Zhao & Qingchun Meng & Shengnan Yin & Di Wan, 2020. "Optimal scheduling of airport ferry vehicles based on capacity network," Annals of Operations Research, Springer, vol. 295(1), pages 163-182, December.
  • Handle: RePEc:spr:annopr:v:295:y:2020:i:1:d:10.1007_s10479-020-03743-0
    DOI: 10.1007/s10479-020-03743-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03743-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03743-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Patrick Jaillet, & Sébastien Martin, 2019. "Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications," Operations Research, INFORMS, vol. 67(1), pages 143-162, January.
    2. Schyns, M., 2015. "An ant colony system for responsive dynamic vehicle routing," European Journal of Operational Research, Elsevier, vol. 245(3), pages 704-718.
    3. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    4. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    5. Weiszer, Michal & Chen, Jun & Locatelli, Giorgio, 2015. "An integrated optimisation approach to airport ground operations to foster sustainability in the aviation sector," Applied Energy, Elsevier, vol. 157(C), pages 567-582.
    6. Du, Jia Yan & Brunner, Jens O. & Kolisch, Rainer, 2014. "Planning towing processes at airports more efficiently," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 293-304.
    7. Fouad Ben Abdelaziz & Hatem Masri & Houda Alaya, 2017. "A recourse goal programming approach for airport bus routing problem," Annals of Operations Research, Springer, vol. 251(1), pages 383-396, April.
    8. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    9. Silvia Padrón & Daniel Guimarans, 2019. "An Improved Method for Scheduling Aircraft Ground Handling Operations From a Global Perspective," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-25, August.
    10. A Norin & D Yuan & T A Granberg & P V&aauml;rbrand, 2012. "Scheduling de-icing vehicles within airport logistics: a heuristic algorithm and performance evaluation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1116-1125, August.
    11. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Xue & Zhao, Peixin & Kong, Dexin, 2023. "Two-stage optimization of airport ferry service delay considering flight uncertainty," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1103-1116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Peixin & Han, Xue & Wan, Di, 2021. "Evaluation of the airport ferry vehicle scheduling based on network maximum flow model," Omega, Elsevier, vol. 99(C).
    2. Han, Xue & Zhao, Peixin & Kong, Dexin, 2023. "Two-stage optimization of airport ferry service delay considering flight uncertainty," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1103-1116.
    3. Silvia Padrón & Daniel Guimarans, 2019. "An Improved Method for Scheduling Aircraft Ground Handling Operations From a Global Perspective," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-25, August.
    4. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    5. Husemann, Michael & Lahrs, Lennart & Stumpf, Eike, 2023. "The impact of dispatching logic on the efficiency of Urban Air Mobility operations," Journal of Air Transport Management, Elsevier, vol. 108(C).
    6. Kim, Junyoung & Goo, Byungju & Roh, Youngjoo & Lee, Chungmok & Lee, Kyungsik, 2023. "A branch-and-price approach for airport gate assignment problem with chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 1-26.
    7. Canan G. Corlu & Rocio de la Torre & Adrian Serrano-Hernandez & Angel A. Juan & Javier Faulin, 2020. "Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities," Energies, MDPI, vol. 13(5), pages 1-33, March.
    8. Bao, Dan-Wen & Zhou, Jia-Yi & Zhang, Zi-Qian & Chen, Zhuo & Kang, Di, 2023. "Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification," Journal of Air Transport Management, Elsevier, vol. 108(C).
    9. Alonso Tabares, Diego & Mora-Camino, Felix & Drouin, Antoine, 2021. "A multi-time scale management structure for airport ground handling automation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    10. Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
    11. Zhen, Lu & Baldacci, Roberto & Tan, Zheyi & Wang, Shuaian & Lyu, Junyan, 2022. "Scheduling heterogeneous delivery tasks on a mixed logistics platform," European Journal of Operational Research, Elsevier, vol. 298(2), pages 680-698.
    12. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    13. Silva, João & Kalakou, Sofia & Andrade, Antonio R., 2023. "Maximizing non-aeronautical revenues in airport terminals using gate assignment and passenger behaviour modelling," Journal of Air Transport Management, Elsevier, vol. 112(C).
    14. Zhu, Zheng & Xu, Ailing & He, Qiao-Chu & Yang, Hai, 2021. "Competition between the transportation network company and the government with subsidies to public transit riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    15. Sen Li & Kameshwar Poolla & Pravin Varaiya, 2020. "Impact of Congestion Charge and Minimum Wage on TNCs: A Case Study for San Francisco," Papers 2003.02550, arXiv.org, revised Feb 2021.
    16. Ming Zhang & Qianwen Huang & Sihan Liu & Huiying Li, 2019. "Multi-Objective Optimization of Aircraft Taxiing on the Airport Surface with Consideration to Taxiing Conflicts and the Airport Environment," Sustainability, MDPI, vol. 11(23), pages 1-27, November.
    17. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
    18. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    19. Arto O Salonen & Noora Haavisto, 2019. "Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    20. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:295:y:2020:i:1:d:10.1007_s10479-020-03743-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.