IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v292y2020i1d10.1007_s10479-019-03300-4.html
   My bibliography  Save this article

Solving utility-maximization selection problems with Multinomial Logit demand: Is the First-Choice model a good approximation?

Author

Listed:
  • Laurent Alfandari

    (ESSEC Business School)

  • Victoire Denoyel

    (Mercy College)

  • Aurélie Thiele

    (Southern Methodist University)

Abstract

We investigate First-Choice (FC) assignment models, a simple type of choice model where customers are allocated to their highest utility option, as a heuristic or starting point for the Multinomial Logit (MNL) model in the context of selection problems with a utility maximization objective. This type of problem occurs in a variety of applications, from location problems to assortment planning or transportation planning. FC assignment models are less refined but computationally more tractable than the more commonly used MNL. MNL suffers from tractability issues due to its nonlinear structure when used within a large size optimization problem with binary decision variables. We design the first comparison of the two modeling frameworks in a context of customer utility maximization for selection problems with binary variables. We provide a probabilistic analysis of the expected customer choice probabilities, document the computational challenges faced by the MNL model in our setting and show in numerical experiments that the FC model exhibits excellent performance as an approximation of the MNL model with an average gap for instance of at most 2.2% for uniformly distributed utilities and of at most 1.4% for normally distributed utilities (and below 1% in a majority of test cases). The key contribution of this paper is to build the case for the FC model as a tractable, high-quality approximation of the MNL model for binary selection problems with utility maximization.

Suggested Citation

  • Laurent Alfandari & Victoire Denoyel & Aurélie Thiele, 2020. "Solving utility-maximization selection problems with Multinomial Logit demand: Is the First-Choice model a good approximation?," Annals of Operations Research, Springer, vol. 292(1), pages 553-573, September.
  • Handle: RePEc:spr:annopr:v:292:y:2020:i:1:d:10.1007_s10479-019-03300-4
    DOI: 10.1007/s10479-019-03300-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03300-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03300-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    2. Denoyel, Victoire & Alfandari, Laurent & Thiele, Aurélie, 2017. "Optimizing healthcare network design under reference pricing and parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 263(3), pages 996-1006.
    3. Haase, Knut & Müller, Sven, 2014. "A comparison of linear reformulations for multinomial logit choice probabilities in facility location models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 689-691.
    4. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    5. Robert Aboolian & Oded Berman & Dmitry Krass, 2009. "Efficient solution approaches for a discrete multi-facility competitive interaction model," Annals of Operations Research, Springer, vol. 167(1), pages 297-306, March.
    6. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    7. Paul E. Green & Abba M. Krieger, 1985. "Models and Heuristics for Product Line Selection," Marketing Science, INFORMS, vol. 4(1), pages 1-19.
    8. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    9. R Aboolian & O Berman & D Krass, 2008. "Optimizing pricing and location decisions for competitive service facilities charging uniform price," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1506-1519, November.
    10. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Leyva López & Jesús Jaime Solano Noriega & Omar Ahumada Valenzuela & Alma Montserrat Romero Serrano, 2022. "A preference choice model for the new product design problem," Operational Research, Springer, vol. 22(4), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Espinoza Garcia & Laurent Alfandari, 2018. "Robust location of new housing developments using a choice model," Annals of Operations Research, Springer, vol. 271(2), pages 527-550, December.
    2. Zhang, Yue, 2015. "Designing a retail store network with strategic pricing in a competitive environment," International Journal of Production Economics, Elsevier, vol. 159(C), pages 265-273.
    3. Shaoning Han & Andrés Gómez & Oleg A. Prokopyev, 2022. "Fractional 0–1 programming and submodularity," Journal of Global Optimization, Springer, vol. 84(1), pages 77-93, September.
    4. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin, 2023. "The follower competitive facility location problem under the nested logit choice rule," European Journal of Operational Research, Elsevier, vol. 310(2), pages 834-846.
    5. Ljubić, Ivana & Moreno, Eduardo, 2018. "Outer approximation and submodular cuts for maximum capture facility location problems with random utilities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 46-56.
    6. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    7. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    8. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    9. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    10. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    11. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    12. Shivaram Subramanian & Pavithra Harsha, 2021. "Demand Modeling in the Presence of Unobserved Lost Sales," Management Science, INFORMS, vol. 67(6), pages 3803-3833, June.
    13. A. Gürhan Kök & Marshall L. Fisher, 2007. "Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application," Operations Research, INFORMS, vol. 55(6), pages 1001-1021, December.
    14. H Küçükaydın & N Aras & İ K Altınel, 2011. "A discrete competitive facility location model with variable attractiveness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1726-1741, September.
    15. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    16. Steven Lamontagne & Margarida Carvalho & Emma Frejinger & Bernard Gendron & Miguel F. Anjos & Ribal Atallah, 2023. "Optimising Electric Vehicle Charging Station Placement Using Advanced Discrete Choice Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1195-1213, September.
    17. Ngan Ha Duong & Tien Thanh Dam & Thuy Anh Ta & Tien Mai, 2022. "Joint Location and Cost Planning in Maximum Capture Facility Location under Multiplicative Random Utility Maximization," Papers 2205.07345, arXiv.org, revised Feb 2023.
    18. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    19. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    20. Marshall Fisher & Ramnath Vaidyanathan, 2014. "A Demand Estimation Procedure for Retail Assortment Optimization with Results from Implementations," Management Science, INFORMS, vol. 60(10), pages 2401-2415, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:292:y:2020:i:1:d:10.1007_s10479-019-03300-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.