IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v271y2018i2d10.1007_s10479-018-2755-9.html
   My bibliography  Save this article

Computing multiobjective Markov chains handled by the extraproximal method

Author

Listed:
  • Julio B. Clempner

    (School of Physics and Mathematics National Polytechnic Institute)

Abstract

This paper suggests a new method for generating the Pareto front in multi-objective Markov chains, which overcomes some existing drawbacks in multi-objective methods: a fundamental issue is to find strong Pareto policies which are policies whose cost-function value is the closest in Euclidean norm to the utopian point. Each strong Pareto policy is reached when each cost-function, constrained by the strategy of others, cannot improve further its own criterion. Constraints associated to the objective function are implemented formulating the problem as a bi-level optimization approach. We convert the problem into a single level optimization approach by introducing a generalized Lagrangian function to represent the original multi-objective problem in terms of a related nonlinear programming problem. Then, we apply the Tikhonov regularization method to the objective function. The regularization method ensures that all the possible Pareto policies to be generated along the Pareto front are strong Pareto policies. For solving the problem we employ the extra-proximal method. The method effectively approximates to every optimal Pareto point, which in this case is a strong Pareto point, in the Pareto front. The experimental result, applied to the route selection for counter-kidnapping problem, validates the effectiveness and usefulness of the method.

Suggested Citation

  • Julio B. Clempner, 2018. "Computing multiobjective Markov chains handled by the extraproximal method," Annals of Operations Research, Springer, vol. 271(2), pages 469-486, December.
  • Handle: RePEc:spr:annopr:v:271:y:2018:i:2:d:10.1007_s10479-018-2755-9
    DOI: 10.1007/s10479-018-2755-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2755-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2755-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan Fu & Urmila Diwekar, 2004. "An Efficient Sampling Approach to Multiobjective Optimization," Annals of Operations Research, Springer, vol. 132(1), pages 109-134, November.
    2. Hoong Chuin Lau & Zhi Yuan & Aldy Gunawan, 2016. "Patrol scheduling in urban rail network," Annals of Operations Research, Springer, vol. 239(1), pages 317-342, April.
    3. K Deb, 2001. "Nonlinear goal programming using multi-objective genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 291-302, March.
    4. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    5. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    6. Clempner, Julio B. & Poznyak, Alexander S., 2016. "Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 142-160.
    7. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julio B. Clempner, 2021. "A Proximal/Gradient Approach for Computing the Nash Equilibrium in Controllable Markov Games," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 847-862, March.
    2. Julio B. Clempner, 2018. "Strategic Manipulation Approach for Solving Negotiated Transfer Pricing Problem," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 304-316, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Weihua & Reimann, Marc, 2014. "A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 15-24.
    2. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    3. Weihua Zhang & Marc Reimann, 2014. "Towards a multi-objective performance assessment and optimization model of a two-echelon supply chain using SCOR metrics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 591-622, December.
    4. Pokharel, Shaligram, 2008. "A two objective model for decision making in a supply chain," International Journal of Production Economics, Elsevier, vol. 111(2), pages 378-388, February.
    5. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    6. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    7. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    8. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    9. Morton, Alec, 2014. "Aversion to health inequalities in healthcare prioritisation: A multicriteria optimisation perspective," Journal of Health Economics, Elsevier, vol. 36(C), pages 164-173.
    10. T. Reshma & K. Reddy & Deva Pratap & Mehdi Ahmedi & V. Agilan, 2015. "Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4589-4606, October.
    11. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    12. S Dhouib & A Kharrat & H Chabchoub, 2011. "Goal programming using multiple objective hybrid metaheuristic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 677-689, April.
    13. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    14. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    15. Denizalp Goktas & Jiayi Zhao & Amy Greenwald, 2022. "Zero-Sum Stochastic Stackelberg Games," Papers 2211.13847, arXiv.org.
    16. S. Razavyan, 2016. "A Method for Generating a Well-Distributed Pareto Set in Multiple Objective Mixed Integer Linear Programs Based on the Decision Maker’s Initial Aspiration Level," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-23, August.
    17. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    18. Carolina Almeida & Richard Gonçalves & Elizabeth Goldbarg & Marco Goldbarg & Myriam Delgado, 2012. "An experimental analysis of evolutionary heuristics for the biobjective traveling purchaser problem," Annals of Operations Research, Springer, vol. 199(1), pages 305-341, October.
    19. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    20. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:271:y:2018:i:2:d:10.1007_s10479-018-2755-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.