IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v265y2018i2d10.1007_s10479-016-2331-0.html
   My bibliography  Save this article

Optimal column subset selection for image classification by genetic algorithms

Author

Listed:
  • Pavel Krömer

    (VŠB-Technical University of Ostrava)

  • Jan Platoš

    (VŠB-Technical University of Ostrava)

  • Jana Nowaková

    (VŠB-Technical University of Ostrava)

  • Václav Snášel

    (VŠB-Technical University of Ostrava)

Abstract

Many problems in operations research can be solved by combinatorial optimization. Fixed-length subset selection is a family of combinatorial optimization problems that involve selection of a set of unique objects from a larger superset. Feature selection, p-median problem, and column subset selection problem are three examples of hard problems that involve search for fixed-length subsets. Due to their high complexity, exact algorithms are often infeasible to solve real-world instances of these problems and approximate methods based on various heuristic and metaheuristic (e.g. nature-inspired) approaches are often employed. Selecting column subsets from massive data matrices is an important technique useful for construction of compressed representations and low rank approximations of high-dimensional data. Search for an optimal subset of exactly k columns of a matrix, $$A^{m\times n}$$ A m × n , $$k

Suggested Citation

  • Pavel Krömer & Jan Platoš & Jana Nowaková & Václav Snášel, 2018. "Optimal column subset selection for image classification by genetic algorithms," Annals of Operations Research, Springer, vol. 265(2), pages 205-222, June.
  • Handle: RePEc:spr:annopr:v:265:y:2018:i:2:d:10.1007_s10479-016-2331-0
    DOI: 10.1007/s10479-016-2331-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2331-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2331-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Zhang & Cong Wang & Guoqing Chen, 2021. "A Review Selection Method for Finding an Informative Subset from Online Reviews," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 280-299, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    2. Miriam Kießling & Sascha Kurz & Jörg Rambau, 2021. "An exact column-generation approach for the lot-type design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 741-780, October.
    3. Kenneth Carling & Mengjie Han & Johan Håkansson, 2012. "Does Euclidean distance work well when the p-median model is applied in rural areas?," Annals of Operations Research, Springer, vol. 201(1), pages 83-97, December.
    4. Boris Goldengorin & Dmitry Krushinsky & Jannes Slomp, 2012. "Flexible PMP Approach for Large-Size Cell Formation," Operations Research, INFORMS, vol. 60(5), pages 1157-1166, October.
    5. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    6. Tao Zhuolin & Zheng Qingjing & Kong Hui, 2018. "A Modified Gravity p-Median Model for Optimizing Facility Locations," Journal of Systems Science and Information, De Gruyter, vol. 6(5), pages 421-434, October.
    7. Amir Hossein Sadeghi & Ziyuan Sun & Amirreza Sahebi-Fakhrabad & Hamid Arzani & Robert Handfield, 2023. "A Mixed-Integer Linear Formulation for a Dynamic Modified Stochastic p-Median Problem in a Competitive Supply Chain Network Design," Logistics, MDPI, vol. 7(1), pages 1-24, March.
    8. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    9. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.
    10. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    11. Campos Rodrí­guez, Clara M. & Moreno Pérez, José A., 2008. "Multiple voting location problems," European Journal of Operational Research, Elsevier, vol. 191(2), pages 437-453, December.
    12. Snežana Tadić & Mladen Krstić & Željko Stević & Miloš Veljović, 2023. "Locating Collection and Delivery Points Using the p -Median Location Problem," Logistics, MDPI, vol. 7(1), pages 1-17, February.
    13. Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
    14. Saïd Salhi & Gábor Nagy, 2009. "Local improvement in planar facility location using vehicle routing," Annals of Operations Research, Springer, vol. 167(1), pages 287-296, March.
    15. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    16. Deli Liu & Keqi Wang, 2023. "Research on the Siting of Rural Public Cultural Space Based on the Path-Clustering Algorithm: A Case Study of Yumin Township, Yushu City, Jilin Province, China," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    17. Corinna Heßler & Kaouthar Deghdak, 2017. "Discrete parallel machine makespan ScheLoc problem," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1159-1186, November.
    18. İbrahim Miraç Eligüzel & Eren Özceylan & Gerhard-Wilhelm Weber, 2023. "Location-allocation analysis of humanitarian distribution plans: a case of United Nations Humanitarian Response Depots," Annals of Operations Research, Springer, vol. 324(1), pages 825-854, May.
    19. Jayson Lin & Shuo Yang & Kai Huang & Kun Wang & Sunghoon Jang, 2025. "Network- and Demand-Driven Initialization Strategy for Enhanced Heuristic in Uncapacitated Facility Location Problem," Mathematics, MDPI, vol. 13(13), pages 1-31, June.
    20. Sáez-Aguado, Jesús & Trandafir, Paula Camelia, 2012. "Some heuristic methods for solving p-median problems with a coverage constraint," European Journal of Operational Research, Elsevier, vol. 220(2), pages 320-327.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:265:y:2018:i:2:d:10.1007_s10479-016-2331-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.