IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v251y2017i1d10.1007_s10479-015-1908-3.html
   My bibliography  Save this article

Fuzzy goal programming model for classification problems

Author

Listed:
  • Soulef Smaoui

    (Sfax University)

  • Belaid Aouni

    (Qatar University)

Abstract

The aim of this paper is to propose a new approach, based on fuzzy goal programming, for classification problems where the cut-off value c corresponding to the discriminant axe is considered as imprecise. The fuzziness was handled through different membership functions. The proposed model will be illustrated through two and multi-groups classification problems.

Suggested Citation

  • Soulef Smaoui & Belaid Aouni, 2017. "Fuzzy goal programming model for classification problems," Annals of Operations Research, Springer, vol. 251(1), pages 141-160, April.
  • Handle: RePEc:spr:annopr:v:251:y:2017:i:1:d:10.1007_s10479-015-1908-3
    DOI: 10.1007/s10479-015-1908-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1908-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1908-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J J Glen, 2005. "Mathematical programming models for piecewise-linear discriminant analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 331-341, March.
    2. Willy Gochet & Antonie Stam & V. Srinivasan & Shaoxiang Chen, 1997. "Multigroup Discriminant Analysis Using Linear Programming," Operations Research, INFORMS, vol. 45(2), pages 213-225, April.
    3. Hojati, Mehran & Bector, C. R. & Smimou, Kamal, 2005. "A simple method for computation of fuzzy linear regression," European Journal of Operational Research, Elsevier, vol. 166(1), pages 172-184, October.
    4. J J Glen, 2001. "Classification accuracy in discriminant analysis: a mixed integer programming approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 328-339, March.
    5. Sueyoshi, Toshiyuki, 2001. "Extended DEA-Discriminant Analysis," European Journal of Operational Research, Elsevier, vol. 131(2), pages 324-351, June.
    6. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    7. J J Glen, 1999. "Integer programming methods for normalisation and variable selection in mathematical programming discriminant analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1043-1053, October.
    8. H. Hassanpour & H. R. Maleki & M. A. Yaghoobi, 2009. "A Goal Programming Approach To Fuzzy Linear Regression With Non-Fuzzy Input And Fuzzy Output Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(05), pages 587-604.
    9. Sueyoshi, Toshiyuki, 1999. "DEA-discriminant analysis in the view of goal programming," European Journal of Operational Research, Elsevier, vol. 115(3), pages 564-582, June.
    10. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    11. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glen, J.J., 2006. "A comparison of standard and two-stage mathematical programming discriminant analysis methods," European Journal of Operational Research, Elsevier, vol. 171(2), pages 496-515, June.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    3. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    4. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    6. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Methodological comparison between DEA (data envelopment analysis) and DEA-DA (discriminant analysis) from the perspective of bankruptcy assessment," European Journal of Operational Research, Elsevier, vol. 199(2), pages 561-575, December.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry," European Journal of Operational Research, Elsevier, vol. 199(2), pages 576-594, December.
    8. Hung-Tso Lin & Tsung-Yu Chou & Yen-Ting Chen & Yin-Chi Huang, 2014. "Profitability analysis using IDEA–DA framework," Annals of Operations Research, Springer, vol. 223(1), pages 291-308, December.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Can R&D expenditure avoid corporate bankruptcy? Comparison between Japanese machinery and electric equipment industries using DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 196(1), pages 289-311, July.
    10. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    11. J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
    12. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    13. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    14. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    15. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    16. J J Glen, 2008. "An additive utility mixed integer programming model for nonlinear discriminant analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1492-1505, November.
    17. J J Glen, 2005. "Mathematical programming models for piecewise-linear discriminant analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 331-341, March.
    18. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    19. Roe, R.A. & Smeelen, M. & Hoefeld, C., 2005. "Outsourcing and organizational change : an employee perspective," Research Memorandum 045, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    20. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:251:y:2017:i:1:d:10.1007_s10479-015-1908-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.